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A new messenger in astrophysics
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- GW150914: first detection of two
merging binary black holes through
gravitational wave radiation.

- A new messenger to compliment
electromagnetic and astroparticle
observations.

- Rapidly growing from a field with a
handful of detections to large samples.
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A new messenger In astrophysics

Inspiral Merger Ring-
down

What makes GW150914 a high
energy event?
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A new messenger In astrophysics

Inspiral Merger Ring-
down
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A new messenger In astrophysics

What makes GW150914 a high
energy event?

~ 36Mg + 29M — 62M

~ 3Mc* "radiated" away

peak luminosity of ~ 10%3L
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A new messenger In astrophysics

How "small" Is this signal?
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How "small" Is this signal?
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A new messenger In astrophysics

How "small" Is this signal?

b — AL — 10~ 21

- Ligo Hanford detector

Human hair: ~ 10™* [m

Visible light: ~ 5 x 10~7 [m

Bohr radius: ~ 5 x 10~ [m

Proton radius: ~ 107'° [m
Credit: Caltech/MIT/LIGO Lab

AL =4 x 10717 [m]




A new messenger in astrophysics

Image credit: myself
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Vending machine at the LIGO Livingston detector
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- History of the field - Ground based - Parameter estimation
Interferometers from observed compact
- Types of detectors object coalescences
- Production of GWs
- Types of sources from compact object - Astrophysics of observed
binaries GW sources

- Current state of the field

- Future advancements




Useful resources
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An Online Course On Gravitational Waves

An Online Course On Gravitational Waves Organised and designhed by Kip S Thorne, Mihai Bondarescu and Yabei
Chen

COURSE DESCRIPTION

This course is an introduction to all major aspects of gravitational waves, as
imparted in Caltech Gravitational Waves course ph237 (see this URL and this

URL):

1. Their physical and mathematical descriptions;

2. Their generation, propagation and interaction withdetectors;

3. Their astrophysical sources (the big bang, early-universe phenomena, binary
stars, black holes, supernovae, neutron stars, ...); and

4. Gravitational wave detectors (their design, underlying physics, noise and noise
control, and data analysis) with emphasis on earth-based interferometers
(LIGO, VIRGO, GEO600, TAMA) and space-based interferometers (LISA), but

also including resonant-mass detectors, doppler tracking of spacecraft, pulsar timing, and polarization of the cosmic

microwave background.

The course is divided in

A. Gravitational-wave theory and sources
B. Gravitational-wave detectors




Useful resources

Extremely comprehensive 1500 page monster, you don't need to
read the whole thing to get to the parts on gravitational waves

Based on a course given at Caltech, free pdf notes available at:
http://www.cns.gatech.edu/PHYS-4421/caltechl36/index.nhtm|




Basic properties of GWs

- Gravitational waves produce
perturbations transverse to
thelr propagation direction and
travel at the speed of light.
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- Gravitational waves produce - Two polarization states,
perturbations transverse to commonly separated in "plus”
thelr propagation direction and and "cross" components.

travel at the speed of light.
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Basic properties of GWs

- Gravitational waves produce - Two polarization states,
perturbations transverse to commonly separated in "plus”
thelr propagation direction and and "cross" components.

travel at the speed of light.

+ polarization X polarization
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Early History

- 1893: Pre-SR, Olivier Heaviside, - 1937: After being convinced that his
Inverse square law could suggest the conclusions were erroneous, Einstein
existence of GWs. published a modified version of his

paper with Rosen with an opposite
- 1905: Pre-GR, Henri Poincaré, GWs conclusion.
expected from accelerating masses.

- 1915: Einsteln presents his theory
of general relativity. Later conjectures
the existence of three types of
waves.

- 1922: Eddington shows two of those
types of waves are coordinate
artifacts.

- 1936: Einstein & Rosen submit a
paper claiming GWs do not exist,

retract it angrily because it was sent Cervantes-Cota et al. (2016),
to a referee who pointed out errors. 3rXiv:1609.09400




Weber bars, first claim of detection

- 1957: Joseph Weber, an engineer,
becomes interested in the possibility
of directly measuring GWSs.

- 1960: Proposal of bar detectors
(referred to as Weber bars by some).

- 1969: First claim of detection of
GWs.

- Following years: Result discredited
by astrophysical arguments, as well
as Independent groups with more
sensitive instruments.

- Joseph Weber kept claiming multiple
detections (including from SN1987a).
Despite his claims being disproven by
the community, he iIs seen as a
pioneer in the field.
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Radiation from orbiting point masses

PHYSICAL REVIEW VOLUME 131, NUMBER 1 1 JULY 1963

Gravitational Radiation from Point Masses in a Keplerian Orbit

P. C. PETERs® AND J. MATHEWS
California Instilute of Technology, Pasadena, California
(Received 18 January 1963)

The gravitational radiation from two point masses going around each other under their mutual gravita-
tional influence is calculated. Two different methods are outlined ; one involves a multipole expansion of the
radiation field, while the other uses the inertia tengor of the source, The calculations apply for arbitrary

eccentricity of the relative orbit, but assume orbital velocities are emall. The total rate, angular distribution,
and polarization of the radiated energy are discussed,

PHYSICAL REVIEW VOLUME 136, NUMBER 4B 23 NOVEMBER 1964

Gravitational Radiation and the Motion of Two Point Masses

P. C. PeETers*t
California Institute of Technology, Pasadena, California
(Received 2 July 1964)

The expansion of the field equations of general relativity in powers of the gravitational coupling constant
yields conservation laws of energy, momentum, and angular momentum. From these, the loss of energy and
angular momentum of a system due to the radiation of gravitational waves is found. T'wo techniques, radia-
tion reaction and flux across a large sphere, are used in these calculations and are shown to be in agreement
over a time average. In the nonrelativistic limit, the energy and angular momentum radiation and angular dis-
tributions are expressed in terms of time derivatives of the quadrupole tensor Q;;. These results are then ap-
plied to a bound system of two point masses moving in elliptical orbits. The secular decays of the semimajor
axis and eccentricity are found as functions of time, and are integrated to specify the decay by gravitational
radiation of such systems as functions of their initial conditions.




Radiation from orbiting point masses

Peters & Mathews 1963
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Radiation from orbiting point masses

Peters & Mathews 1963
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Radiation from orbiting point masses

For an eccentric orbit, the time to merger can be computed from
an integral expression. For a circular orbit the result Is analytical:

L ﬁ _ 64 G°mims(mi+mo)
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Radiation from orbiting point masses

For an eccentric orbit, the time to merger can be computed from
an integral expression. For a circular orbit the result Is analytical:

L 64 G°mima(mi+ma)
ty = 2 §= 6 Gmma(mitma)

O

Using Kepler's third law, this can be expressed in terms of the orbital
period and a combination of the masses called the chirp mass
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for mi; = mqo, M ~ 0.87Tm;




Radiation from orbiting point masses

For an eccentric orbit, the time to merger can be computed from
an integral expression. For a circular orbit the result Is analytical:

64 G°mima(mi+mo)
ty= 2§ = 62 Gmuma(mtma)

O

Using Kepler's third law, this can be expressed in terms of the orbital
period and a combination of the masses called the chirp mass

8/3 —5/3 M Mo 3/5
td — 7.4 [GyI’] (12P[h]) (MM@) : M — %

— (mi1+mg)t/®

for mi; = mqo, M ~ 0.87Tm;

Does nature provide such massive and compact binaries?




The Hulse-Taylor binary

- Pulsars are rapidly rotating neutron
stars that can be used as extremely
accurate clocks.

- 1975: Hulse & Taylor report the
discovery of the first pulsar in a binary
system.

- Expected time to merger of 300 Myrs.
orbital decay on the order of 80
microseconds a year.
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The Hulse-Taylor binary

Weisberg & Taylor (2005)
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- Pulsars are rapidly rotating neutron g
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- 1975: Hulse & Taylor report the
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The Hulse-Taylor binary

Weisberg & Taylor (2005)
B ‘ N N ‘ N ‘ N ‘ N ‘ N
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- Pulsars are rapidly rotating neutron
stars

&=l Not a direct detection of GWSs!

197

B4 But shows that merging
syste . . | |
compact object binaries exist!
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LIGO and Virgo

- 60s-70s: Rainer Weiss (among
others) studies concept of
Interferometers for high frequency
(~10-1000 Hz) detectors.

J

- 1968: Kip Thorne creates the
Caltech research group dedicated to
the theory of GW sources and their
detection.

O

- 90s: LIGO is funded, Barry Barish
appointed as principal investigator.
Virgo Is funded.

- 2000s: Operation of initial detectors. {M} \/| RGD

https://www.ligo.caltech.edu/system/
media files/binaries/386/original/
LIGOHIstory.pdf




LIGO and Virgo

- 60s-70s: Rainer Weiss (among
others) studies concept of
Interferometers for high frequency
(~10-1000 Hz) detectors.

J

- 1968: Kip Thorne creates the
Caltech research group dedicated to
the theory of GW sources and their
detection.

O

- 90s: LIGO is funded, Barry Barish
appointed as principal investigator.
Virgo Is funded.

- 2000s: Operation of initial detectors. {M} \/

https://www.ligo.caltech.edu/system/

RGO

media files/binaries/386/original/ Over a thousand members in the
LIGOHIstory.pdf joing LIGO-Virgo collaboration!




LIGO and VIRGO

September 14, 2015  October 12, 2015 December 26, 2015
CONFIRMED CANDIDAVE CONFIRMED

- 2015: First observing run (O1) of LIGO,

GW150914 detected within the first
— e month.

+ LIGOsfirstobserving run
Sentember 12,2015 - January 19, 2016

- 2016-2017: Second observing run

(02), advanced Virgo detector joins the
run.

Credit: LIGO collaboration

- 2017: Nobel prize awarded to Weiss,
Thorne & Barish.

- August 2017: First NS+NS detection,
succesful electromagnetic identification
making It the first multimessenger
source with GWs.

Credit: Soares-Santos et al. and DES collaboration




Sources observed to date

Masses in the Stellar Graveyard

1N Solar Masses

=M Neutron Stars
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GWTC-2 plot v1.0
[LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern
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Masses in the Stellar Graveyard

1N Solar Masses
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Sources observed to date

Real data Is messier!

1.0 | | | M
GW190425 \\ } )&"\
y e
w ~ N
(| |
0.6 i) AR
§ V|
= | {/ 1)
| , ,
0.4 \ VIS
| XY\ Y GW190521
o/ \L/
0.2 5
N
- S/ Gwigo4ge_152155  GWII0BIA e L my =3M,
2 4 (10 20 40 70 100 200 400
M/M,
Ol GWTC-1 GWTC-2
3 BH+BH 10 BH+BH, 1 NS+NS 40 BH+BH, 2 NS+NS, 2 7
astro-ph 1606.04856 astro-ph 2010.14527 astro-ph 2010.14527

18



Timeline for the coming years
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GW spectrum
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Binary black holes observed by LIGO/Virgo
merge at a frequency of order ~ 200 Hz.
What about more massive BHs?

mi = amq, Mo = My
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GW spectrum

Hanford, Washington (H1) Livingston, Louisiana (L1)
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Physical Review Letters 116, 061102 (20106)
Binary black holes observed by LIGO/Virgo More massive black
merge at a frequency of order ~ 200 Hz. holes merge outside
What about more massive BHs? LIGO's sensitivity band
/| /! .
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GW spectrum

www.gwplotter.com
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GW spectrum
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GW spectrum
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GW spectrum
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GW spectrum
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3rd generation detectors

Cosmic Explorer

Succesor to LIGO. Interferometer
with 40 km arm length.

Reitze et al. 2019,
astro-ph 1907.04833

EINSTEIN
TELESCOPE

e Einstein Telescope

European 3rd generation
detector. Three 10 km arms in
triangular configuration.

Punturo et al. (2010)
Maggiore et al. (2020)




3rd generation detectors

Order of magnitude

‘ "ﬂ' Increase In sensitivity!
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3rd generation detectors

Y

Order of magnitude
Increase In sensitivity!
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3rd generation detectors

Order of magnitude

‘ "ﬂ" Increase In sensitivity!
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3rd generation detectors

Order of magnitude

‘ '“'Fr Increase In sensitivity!

@\
n 23 -
S 10 hxvVE xD; 1
~—
2
B o 10 fold Increase In horizon
§ 10~ distance translates to 1000 fold
'§ iINcrease in sensitive volume
N
s CE2 | o
10 Compare with EM radiation,
10 100 1000 order of magnitude improvement
Frequency / Hz in flux gives ~30 fold increase in

Reitze et al. (2019) sensitive volume.




3rd generation detectors
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Figure courtesy of Christopher P. L. Berry, based on the
calculations of Hall & Evans 2019 (1902.09485)




3rd generation detectors

el o |
5 . . S 10% detected]
| Formation of fir , —SN 50% detected|
S . I — Ck
= 1 ' [
i Peak of @0s oF — A
~ 100 - aLIGO
101

FL R S T
Total source-frame mass M /M

Figure courtesy of Christopher P. L. Berry, based on the
calculations of Hall & Evans 2019 (1902.09485)




