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From data to binary properties

How do we move from an observed waveform to a set of 
properties in a compact binary coalescence?



2

Detectors are noisy!

GW150914, discovery paper
Physical Review Letters 116, 061102 (2016)
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Detectors are noisy!

GW150914, discovery paper
Physical Review Letters 116, 061102 (2016) GW170817 (binary NS), discovery paper

Physical Review Letters 119,161101 (2017)

Actual data for GW170817 showed a very 
strong glitch in LIGO-Livingston!
Rapidly cleaning this signal was an 
important part on the effort to find its EM 
counterpart. 
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Detectors are noisy!

Signal in an interferometer will 
always be a combination of an actual 
GW signal and the interferometer 
noise.

Sudden events of noise in the 
detector can be interpreted as fake 
signals. There is a significant effort to 
characterize not just the steady well 
behaved noise spectrum but also 
these "glitches"
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Detectors are noisy!

Signal in an interferometer will 
always be a combination of an actual 
GW signal and the interferometer 
noise.

Sudden events of noise in the 
detector can be interpreted as fake 
signals. There is a significant effort to 
characterize not just the steady well 
behaved noise spectrum but also 
these "glitches"

One example of a common glitch in LIGO data

https://www.zooniverse.org/projects/
zooniverse/gravity-spy

Network of interferometers is critical 
to distinguish real from artificial 
signals!
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Matched filtering

CBC stands for compact binary 
coalescence. In this case we know from 
first principles what a signal should look 
like and we can search through the data 
for it. The method used for this is called 
matched filtering.

GW150914, CBC search paper
Phys. Rev. D 93, 122003 (2016)
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Matched filtering

CBC stands for compact binary 
coalescence. In this case we know from 
first principles what a signal should look 
like and we can search through the data 
for it. The method used for this is called 
matched filtering.

GW150914, CBC search paper
Phys. Rev. D 93, 122003 (2016)

Signal is further weighted by additional 
criteria that checks for the resemblance 
of a signal to a CBC,

A final "detection statistic" is built by 
averaging the weighted SNR between 
detectors. For two LIGO detectors this is:
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Matched filtering

Matched filtering for GW151226 (binary BH merger). Credit: A. Nitz
https://www.youtube.com/watch?v=bBBDR5jf9oU
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Matched filtering

Matched filtering for GW151226 (binary BH merger). Credit: A. Nitz
https://www.youtube.com/watch?v=bBBDR5jf9oU

Exercise 1
Let's make a simple illustration of how matched 
filtering does this shift in time to compare to a 
template. Imagine a "signal" and a "template" 
given by:

The template is just the same as the signal but 
shifted in time. What value of t gives the 
maximum for the following integral?
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Matched filtering (GW150914)

GW150914, CBC search paper, Phys. Rev. D 93, 122003 (2016)

Applying matched filtering from a template bank 
to the data yields one template with a high 
detection statistic. Is this a spurious result? 
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Matched filtering (GW150914)

The rate of high significance events 
can be determined from the data 
itself. With a network of detectors, 
artificially long stretches of data can 
be produced by time-shifting them 
with respect to each other.

Time-shifting produces artificial high 
significance events when the signal 
of GW150914 matches a glitch.

This analysis provides a measure of 
the false-alarm rate of a detection.

GW150914, CBC search paper,
 Phys. Rev. D 93, 122003 (2016)



7

Matched filtering (GW150914)

The rate of high significance events 
can be determined from the data 
itself. With a network of detectors, 
artificially long stretches of data can 
be produced by time-shifting them 
with respect to each other.

Time-shifting produces artificial high 
significance events when the signal 
of GW150914 matches a glitch.

This analysis provides a measure of 
the false-alarm rate of a detection.

GW150914, CBC search paper,
 Phys. Rev. D 93, 122003 (2016)



8

Inferring source parameters
After identifying a signal, what 

information can be extracted from it?
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Inferring source parameters
After identifying a signal, what 

information can be extracted from it?

Credit: Alan J. Weistein

Once a signal is identified an extensive 
search is made against waveforms to 

determine its properties.
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Chirp mass

What we have seen in the previous class:
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Chirp mass

What we have seen in the previous class:

In practice we cannot ignore cosmology, and we observe a 
redshifted frequency:

A distance measurement requires a cosmological model 
or an independent redshift measurement!

Exercise 2
Derive the expression for the redshifted mass.
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Chirp mass

Less massive binaries are observable for more cycles

https://www.youtube.com/watch?v=I1Ut6h6PkOw
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Chirp mass

GW170817, chirp mass determined with 
a precision of 0.001 solar masses

GW170817 (binary NS), discovery paper
Physical Review Letters 119,161101 (2017)
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Chirp mass

GW170817, chirp mass determined with 
a precision of 0.001 solar masses

GW170817 (binary NS), discovery paper
Physical Review Letters 119,161101 (2017)

Results from LIGO's O1
Physical Review X 6,041015 (2016)

Binary black holes have shorter 
lives on band, leading to less 

constrained chirp masses.

Significant uncertainty 
between mass ratio and 

spin

Exercise 3
Using the formula for the time to merger, estimate 
the number of cycles a merging compact object 
has before coalescing by taking the product of the 
merger time and the frequency at 10 Hz. How 
many cycles would a source with a chirp mass of a 
solar mass have? For which chirp mass you'd 
expect to have about a single cycle before merger?
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After the chirp mass, the best 
constrained quantities are usually the 
mass ratio and the effective spin:

Where the chi give the components of 
the spin aligned with the orbital plane.

These two parameters have a 
degenerate effect on the waveform, 
though this degeneracy can be broken 
with sufficiently accurate observations.

Mass ratio and spin

Results from LIGO's O1
Physical Review X 6,041015 (2016)
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Localization

Prospects for localization of sources
Living Reviews in Relativity volume 21,

Article number: 3 (2018)

Localization of sources comes mostly 
from triangulation. Except for a couple 
of sources, uncertainty in location is 
more than 100 square degrees.
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Localization

Prospects for localization of sources
Living Reviews in Relativity volume 21,

Article number: 3 (2018)

Localization of sources comes mostly 
from triangulation. Except for a couple 
of sources, uncertainty in location is 
more than 100 square degrees.

credit: LIGO-Virgo collaboration
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And from all this, catalogues!
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Want to know more?

Astro-GR course has some lectures on LIGO data analysis. 
But better to use more up to date info!
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Want to know more?

Presentations from open data workshops of the LVC are 
available online. workshop1 and workshop2 avalable also!
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Want to know more?

Really a good review for both parts of 
today's lecture.
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Want to know more?

Up to date overview of the methods being used for signal processing.


