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Abstract

In neutron star crusts, the advection of magnetic field by the moving electrons, an effect known

as Hall drift, should play a very important role as ions and protons should remain essentially

fixed. Although Hall drift preserves the magnetic field energy, it has been argued that it may

drive a turbulent cascade to scales at which Ohmic dissipation becomes effective (Goldreich and

Reisenegger 1992), allowing a much faster decay in objects with very strong fields. I have developed

a finite-difference code, restricted to axial symmetry, to study the evolution of magnetic fields due

to Hall drift and Ohmic dissipation in a uniform spherical shell. The core of the star is assumed

to be a superconductor that has expelled all magnetic flux due to the Meissner effect. For the

case of constant resistivity and electron density, I have compared my code with the spectral code

used by Hollerbach and Rüdiger (2002), obtaining a remarkable agreement. I also studied the

stability of analytical Hall equilibria, finding that these fields decay essentially on the timescale of

the fundamental Ohmic mode and thus appear to be stable to axially symmetric perturbations.
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Chapter 1

Introduction

The usual estimation of neutron star magnetic fields is done taking into account the mag-

netic dipole model for pulsars. In this model, the magnetic field is taken to be a misaligned

dipole with respect to the rotation axis of the star, producing dipole radiation and thus spin-

ning down the star. By equating the rate of energy loss due to radiation and spindown (see,

for instance, Shapiro and Teukolsky 1983), it can be shown that Ω̇ = −B2
PR

6Ω3 sin2 α/6c3I,

where Ω is the angular velocity of the star, BP is the surface magnetic field strength at

the poles, R is the radius of the star, α is the inclination angle between the rotational and

the magnetic axis, c is the speed of light and I is the moment of Inertia of the star. Thus,

measurements of Ω and Ω̇ can be used to estimate BP , which results in a very wide range

of surface field strengths, going from 108 G up to fields that could be as large as 1015 G

(Kaspi et al. 1999).

Most low-field objects are observed in binary systems, and their low fields are thought

to be a consequence of accretion, which serves also to speed up the star’s rotation (see, for

instance, Bhattacharya and van den Heuvel 1991). Typical radio pulsars on the other hand

are isolated objects, and if they are affected by any noticeable magnetic field evolution, it

should be due to processes inherent to the neutron star and not the environment. Although

it has been argued that field decay in timescales < 107 yr is required to explain the

distribution of radio pulsars in the P − Ṗ diagram (Ostriker and Gunn 1969, Narayan and

Ostriker 1990), others claim that such short timescales are not required (Bhattacharya

et al. 1992, Faucher-Giguère and Kaspi 2006), and a clear answer is not yet established.

The introduction of magnetars, objects with surface magnetic fields of up to 1015G,
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CHAPTER 1. INTRODUCTION

which would be required to power the high X-ray luminosities of AXPs (anomalous X-ray

pulsars), or the gamma ray bursts of SGRs (soft gamma repeaters) introduces a whole

new level to the study of fast magnetic field evolution. Such strongly magnetic neutron

stars were predicted as a plausible product of dynamo effects in the convective stages

of very young and rapidly rotating neutron stars, producing internal fields in principle

up to 3 × 1017(1 ms/P0) G, where P0 is the initial period of rotation (Thompson and

Duncan 1993). Unlike classical radio pulsars, magnetars emit much more energy than

their rotational energy loss, requiring an additional energy reservoir. The magnetic field

evolution is then expected to be of paramount importance to explain the phenomenology

of these objects, be it by keeping a high temperature by dissipation of the magnetic field,

forming twists in the magnetosphere which can give rise to X-rays, or causing stresses in the

neutron star crust that can eventually be released in giant gamma ray bursts (Thompson

and Duncan 1995, 1996, Thompson et al. 2000, 2002). For a review on the properties and

theory of magnetars, see Mereghetti (2008). In order to understand in detail how these

effects come into play, it is neccesary to study the mechanisms for magnetic field evolution

inside the neutron star.

1.1 Hall drift and Ohmic decay

In this thesis work, I will restrict myself to magnetic field evolution in the crusts of neutron

stars, ignoring possible effects involving the fluid core. In the crust, ions are locked into a

crystal lattice, and the only freely moving charged species are the electrons. This electron

fluid should have a negligible acceleration, which in turn implies that the Lorentz force

should be equal to the time-averaged momentum loss through collisions. This yields a

generalized Ohm’s law,

j = σ

(
E +

ve ×B

c

)
, (1.1)

3



CHAPTER 1. INTRODUCTION

where σ is the electrical conductivity of the medium. Magnetic field evolution then follows

from the induction equation

∂B

∂t
= −c∇×E, (1.2)

= ∇×
(
ve ×B − cj

σ

)
, (1.3)

where the first term in the last expression describes advection of field lines by the electron

fluid. In the limit of slowly varying fields, the displacement current can be ignored, and

Ampères law j = c
4π∇×B is valid. Since the current density is simply −eneve (where n

is the electron density), Eq. (1.3) becomes

∂B

∂t
= −∇×

( c

4πne
[∇×B]×B + η∇×B

)
, (1.4)

where η ≡ c2/(4πσ) is the magnetic diffusivity. A more general expression than this,

which includes also the motions of protons and has this result as a limiting case, is given by

Goldreich and Reisenegger (1992). That general case can be used to describe magnetic field

evolution in the core of the star, where protons are mobile. For simplicity, I will consider

both n and η to be functions only of the radial coordinate r, and time independent, which

is not correct if the evolution of the star’s temperature is taken into account (Cumming

et al. 2004, Pons et al. 2009). This equation contains two different effects that act on two

distinct timescales, which can be estimated as

tHall ≡
4πn0eR

2

cB0
, tOhm ≡

R2

η0
, (1.5)

where characteristic values B0 for the magnetic field, n0 for n, η0 for η, and the radius of

the star R for the radial coordinate r are used. The ratio of these two quantities defines

the so-called magnetization parameter RB (a close analog to the Reynolds number of fluid

mechanics),

RB =
tOhm
tHall

=
cB0

4πη0n0e
. (1.6)

4



CHAPTER 1. INTRODUCTION

An estimate for these two timescales associated to a characteristic length scale L instead

of the whole radius of the star was given by Goldreich and Reisenegger (1992),

tHall ' 5× 108 L
2
5

B12

(
ρ

ρnuc

)
yr, tOhm ' 2× 1011L

2
5

T 2
8

(
ρ

ρnuc

)3

yr, (1.7)

where L5 = L/(105 cm), T8 is the temperature in units of 108 K, ρ is the mass density,

ρnuc = 2.8× 1014 gr cm3 and B12 is the magnetic field measured in units of 1012 G. This

suggests that magnetar-like fields could evolve via Hall drift on timescales of the order of

Myr or even less1. However, as shown in Goldreich and Reisenegger (1992), Hall drift is

a conservative effect, and thus cannot produce a decay of the magnetic energy by itself.

The mechanism of evolution through Hall drift was first proposed by Jones (1988), who

hypothesized that this effect could transport flux towards the outer regions of the crust,

where Ohmic dissipation is much more efficient than in the inner regions. Goldreich and

Reisenegger (1992), on the other hand, proposed that Hall drift would cause a turbulent

cascade, driving the field to structures of small spatial scales at which Ohmic dissipation

can become effective. Vainshtein et al. (2000) constructed a plane-parallel model with

an electron density that varies with depth and a purely horizontal field, showing that

the evolution through Hall drift is governed by Burgers’ equation, which develops strong

discontinuities corresponding to current sheets. The inclusion of Ohmic dissipation results

in rapid decay of magnetic energy in these regions. Reisenegger et al. (2007) extended

this result to the case of a purely toroidal (azimuthal) and axially symmetric magnetic

field, showing in this case that the evolution through Hall drift can again be described

with Burgers’ equation. Although these analytical developments are a big step forward to

understand the evolution of the magnetic field, a full understanding of this process seems

to require the use of numerical simulations due to the complex non-linear character of Eq.

(1.3).

1.2 Numerical simulations of Hall drift in neutron stars

Various authors have worked performing numerical simulations to solve Eq. (1.3). Urpin

and Shalybkov (1991) performed simulations of a purely toroidal field on a model star with

11 Myr = 106 years

5



CHAPTER 1. INTRODUCTION

constant (both in space and time) electron density and resistivity, showing that a field of

a single polarity drifts parallel to the axis of symmetry towards one of the hemispheres,

developing a current sheet just below the surface, and thus inducing a rapid dissipation

of magnetic energy. Shalybkov and Urpin (1997) managed to perform a simulation for an

initially purely poloidal field in a conducting sphere for a magnetization parameter up to

RB = 100. They showed that a toroidal component develops, and the poloidal and toroidal

components then transfer energy between each other with a clear periodic behavior that

has an increasing period as the field intensity decays. In this case, an evolution towards

very small length scales was not observed.

Hollerbach and Rüdiger (2002) used a spectral code to solve for combinations of fun-

damental Ohmic decay modes restricted to a spherical shell that represents the neutron

star crust, under the assumption of constant electron density and resistivity, testing fields

with dominant poloidal components. They observed periodic oscillations just as was the

case with Shalybkov and Urpin (1997). However, they could not push their code beyond

RB = 200, which is still far from the values up to RB = 1000 that can be reached in the in-

nermost regions of neutron star crusts (Cumming et al. 2004). Moreover, as RB increases,

current sheets are more likely to form, which will probably be problematic for a spectral

code to cope with. Hollerbach and Rüdiger (2004) extended this work to a simplified model

of a stratified star and tested a purely toroidal field in order to compare their results with

the analytical calculation of Vainshtein et al. (2000). Their results show for this purely

toroidal field that strong current sheets are in fact produced, with the time for energy

decay scaling with the Hall timescale rather than the Ohm timescale. However, they also

showed that the inclusion of a small poloidal component, even if it is much weaker than

the toroidal component, significantly affects the evolution by inhibiting the formation of

very strong discontinuities.

Geppert and Pons (2007) also performed simulations of the combined effect of Hall drift

and Ohmic decay, using realistic (but time-independent, as they did not consider thermal

evolution) models for the electron density and the resistivity, showing that fields with

typical strengths of 1014 G can have a Hall-dominated phase of evolution with rapid Ohmic

decay that lasts between 103 and 104 years. Moreover, they also saw that stratification

favors drift of the toroidal field towards the interior, where conductivity is much higher,

reaching in the end stable configurations with lifetimes of the order of 106 years. More

recently, Pons et al. (2009) successfully performed simulations of both the magnetic and

6



CHAPTER 1. INTRODUCTION

the thermal evolution of a neutron star, with the magnetic field acting as an additional

heating source. These simulations though considered only the effect of Ohmic decay, and

did not take Hall drift into account. They saw that the interplay between the two effects is

of vital importance for high field (> 1013 G) neutron stars, for which a high temperature

and low conductivity are mantained at the initial stages of the evolution, reaching similar

field strengths of about 2 − 3 × 1013 G at later stages, independent of the initial field

strength. Both of these works used a code that worked with finite-differences in the radial

direction and a spectral decomposition in the latitudinal direction.

All the simulations described however, are restricted to axial symmetry, and its hard

to assess precisely what the impact of a full 3D simulation would be, and how much of the

results already obtained would still apply.

The purpose of this thesis has been to develop a finite-difference code to time evolve Eq.

(1.3), in order to test some simple scenarios of magnetic field evolution, trying to better

assess general properties of the Hall drift term in the induction equation. In particular,

I am interested in Hall equilibria and their stability, as the possible existence of stable

fields with quiescent evolution could have an important impact on the general properties

and evolution scenarios of highly magnetized neutron stars. The code developed is also

intended to serve as a basis for future work focused on achieving a better understanding

of magnetic field evolution in both crust and core of neutron stars. Chapter 2 describes

the mathematical framework used for the simulations. Chapter 3 describes the numerical

methods used and a couple of test cases that were simulated with the developed code.

Chapter 4 studies two different situations, first, the different evolution of either poloidally

or toroidally dominated fields, and second, the stability of an analytically known Hall

equilibrium. Finally, Chapter 5 presents the conclusions of my work.

7



Chapter 2

Axially symmetric fields

For the purpose of this thesis, I restrict myself to axially symmetric fields, in which case

B can be written in terms of two scalar functions as

B = ∇α(r, θ)×∇φ+ β∇φ, (2.1)

where φ is the azimuthal angle in spherical coordinates. Thus, α(r, θ) describes the poloidal

field and β(r, θ) the toroidal field. The curl of B can be expressed in terms of these functions

as

∇×B = −∆∗α∇φ+∇β ×∇φ, (2.2)

where ∆∗ is called the Grad-Shafranov operator and is defined as

∆∗ ≡= $2∇ · ($−2∇) = ∂2
r +

sin θ

r2
∂θ

(
∂θ

sin θ

)
, (2.3)

where $ ≡ r sin θ is the radial cylindrical coordinate. Using this, and defining χ ≡
c/(4πen$2), eq. (1.4) gives

∇
(
∂α

∂t

)
×∇φ+

∂β

∂t
∇φ =

∇×
(
$2χ[∆∗α∇φ−∇β ×∇φ]× [∇α×∇φ+ β∇φ]− η[−∆∗α∇φ+∇β ×∇φ]

)
.

(2.4)

8



CHAPTER 2. AXIALLY SYMMETRIC FIELDS

After expanding the cross product inside the curl, each term in this equation is either

poloidal or toroidal. Taking this into account, I have two equations which together are

equivalent to the previous one,

∇
(
∂α

∂t

)
×∇φ =∇×

(
$2χ[∇β ×∇φ]× [∇α×∇φ] + η∆∗α∇φ

)
,

∂β

∂t
∇φ =∇×

(
$2χ∆∗α∇φ× [∇α×∇φ] +$2χβ∇φ× [∇β ×∇φ]− η∇β ×∇φ

)
.

(2.5)

These equations can be transformed into equations for the time derivatives of the scalar

functions α and β,

∂α

∂t
=$2χ[∇α×∇β] · ∇φ+ η∆∗α

∂β

∂t
=$2(∇[χ∆∗α]×∇α+ β∇χ×∇β) · ∇φ+$2∇ ·

(
η∇β
$2

)
.

(2.6)

Using tHall as the unit of time and expressing everything in terms of the characteristic

values B0, n0, η0, and the radius of the star, the equations for α and β can be written in

a dimensionless form, namely,

∂α

∂t
=$2χ[∇α×∇β] · ∇φ+R−1

B η∆∗α

∂β

∂t
=$2(∇[χ∆∗α]×∇α+ β∇χ×∇β) · ∇φ+R−1

B $2∇ ·
(
η∇β
$2

)
,

(2.7)

where the dimensionless χ is given by χ = 1/($2n), of course with $ and n in their

dimensionless versions. Two important points which are apparent from eqs. (2.7) should

be noted:

• A purely toroidal field remains toroidal.

• A purely poloidal field will immediately produce a toroidal component unless the

Hall term is exactly equal to zero.

The equation for β can be rewritten in conservative form,

1

$2

∂β

∂t
= ∇× (χ∆∗α∇α+ χβ∇β) · ∇φ+R−1

B ∇ ·
(
η∇β
$2

)
(2.8)

= ∇ ·
(
∇φ× [χ∆∗α∇α+ χβ∇β] +R−1

B
η∇β
$2

)
, (2.9)

9
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from where it can be seen that the quantity

I1 =

∫
V

β

$2
dV = 2π

∫ π

0

∫ R

0
Btorr d r d θ, (2.10)

which is (except for a constant) the magnetic flux crossing a halfplane limited by the

symmetry axis, should be conserved except for losses at the boundaries.

For the implementation of the numerical simulations, the star is considered to be per-

fectly spherical, so I use eqs. (2.7) in spherical coordinates,

∂

∂t

(
β

sin θ

)
=
∂

∂r

(
χ∆∗α

∂α

∂θ
+ χβ

∂β

∂θ
+R−1

B

η

sin θ

∂β

∂r

)
+

∂

∂θ

(
−χ∆∗α

∂α

∂r
− χβ∂β

∂r
+R−1

B

η

r2 sin θ

∂β

∂θ

)
∂α

∂t
= sin θχ

(
∂β

∂θ

∂α

∂r
− ∂β

∂r

∂α

∂θ

)
+R−1

B η∆∗α.

(2.11)

An important property should be noted about some of the symmetries related to these two

equations. First, if α is either symmetric or antisymmetric with respect to the equator, it is

straightforward to show that ∆∗α preserves that symmetry. Then, if η and n depend only

on the radial coordinate, and α and β are respectively symmetric and antisymmetric with

respect to the equator, Eq. (2.11) implies that ∂α/∂t will be symmetric with respect to the

equator, and ∂β/∂t will be antisymmetric, so the initial symmetries are preserved. The

initial symmetries will also be preserved if α and β are both antisymmetric with respect

to the equator. However, if β is symmetric with respect to the equator, the Hall term

for ∂β/∂t will have antisymmetric terms, so the initial symmetry will be broken. These

properties have already been noted by Hollerbach and Rüdiger (2002).

2.1 Boundary conditions

For the simulations, I consider the magnetic field to be present only at the crust and the

exterior of the neutron star. The core of the star is (for now) considered to be a super-

conducting fluid which has completely expelled all its magnetic flux due to the Meissner

effect, and the radius of the crust-core interface is defined as rmin.

10
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2.1.1 Conditions at the axis (θ = 0, π)

The only requirement at the axis is that the magnetic field is a single-valued function. This

implies that Bφ = Bθ = 0, which in turn gives

β(θ = 0, π) = 0,
∂α

∂r
(θ = 0, π) = 0, (2.12)

which means α is constant along the axis. Since α has an arbitrary “zero-point”, I choose

α = 0 at the axis.

2.1.2 Conditions at the crust-core boundary (r = rmin)

At the interface between the solid crust and the fluid core, I require the normal component

of the magnetic field and the tangential component of the electric field to be continuous,

Br|in = Br|out, Eθ|in = Eθ|out, Eφ|in = Eφ|out, (2.13)

Assuming (for simplicity) that the core is a superconductor with a perfect Meissner effect,

the magnetic and electric fields in it are zero, and thus these conditions are simply

Br(r = rmin) = 0, Eθ(r = rmin) = 0, Eφ(r = rmin) = 0. (2.14)

The easiest of these three to apply is the first one. Since Br ∝ ∂α/∂θ, it implies that α

is constant at the boundary, and since I already fixed α = 0 on the symmetry axis I must

have α = 0 at r = rmin also.

The condition on the electric field produces a much more complex boundary condition.

In terms of the magnetic field, the electric field in the crust is given by

−cE =
c

4πne
(∇×B)×B + η∇×B, (2.15)

(see eq. (1.1)) so requiring the tangential component of the electric field to be zero at the

boundary is equivalent to

0 =
[
$2χ(∇×B)×B + ηR−1

B ∇×B
]
T
, (2.16)

where T denotes the tangential component, and $, χ and η are written in their dimen-

11
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sionless forms. In terms of α and β, this produces the following two (non-linear) boundary

conditions in spherical coordinates

0 =χβ
∂β

∂θ
+R−1

B

η

sin θ

∂β

∂r

0 = sin θχ
∂β

∂θ

∂α

∂r
+R−1

B η∆∗α,

(2.17)

where it has been explicitly used that α(rmin, θ) = 0. These conditions have been written

in a form that closely resembles the terms in eqs. (2.11). Using these similarities, it can

be easily seen that these conditions imply that the time derivative of α is zero at the inner

boundary, and that no toroidal magnetic flux is lost to the core of the star.

In order to compare my simulations with those of Hollerbach and Rüdiger (2002) and

Kojima and Kisaka (2012), I consider not only these boundary conditions, but also “zero

boundary conditions” where both α = 0 and β = 0 are forced at the inner boundary.

This approximation is usually justified by saying that RB is a large number for high field

neutron stars, so the resistive terms in eqs. (2.17) are negligible.

2.1.3 Conditions at the stellar surface (r = R)

If outside the star I consider a perfect vacuum, then the magnetic field there is completely

determined by its radial component at the surface of the star, which must be continuous.

Furthermore, I expect surface currents to dissipate on timescales much smaller than those

of interest to us, so not only the radial component of the magnetic field must be continuous,

but the tangential one also.

The condition imposed on β because of this is trivial. Since there are no currents

outside the star, I must have β = 0 there, and the continuity of the azimuthal component

of the field immediately gives β = 0 as a boundary condition at r = R.

The condition on α is much more complex, as it is non-local. As shown in Marchant

et al. (2011), the continuity of the radial component of the magnetic field implies that the

12
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field outside the star is given by

B = ∇Ψ, Ψ(r, θ, φ) =
∞∑
l=1

l∑
m=−l

alm
rl+1

Ylm(θ, φ),

alm = −R
l+2

l + 1

∫
4π

(Br)r=RY
∗
lm d Ω,

(2.18)

where (Br)r=R is the radial field B · r̂ at the surface of the star, which can be expressed

in terms of α as ([r2 sin θ]−1∂α/∂θ)r=R. Under axial symmetry, only the coefficients with

m = 0 are non-zero, and for these cases I have (omitting the unnecessary m = 0 subscript)

al = −R
l+2

l + 1

∫ 2π

0
dφ

∫ π

0
([r2 sin θ]−1∂α/∂θ)r=RY

∗
l,0 sin θ d θ (2.19)

= − Rl

l + 1

√
2l + 1

4π
· 2π

∫ π

0
Pl(cos θ)

(
∂α

∂θ

)
r=R

d θ. (2.20)

This can be rearranged using integration by parts to obtain an integral that does not

depend on the θ derivative of α. Boundary terms are zero, since I set α = 0 at the axis

and the Legendre polynomials are non-singular, so I have

al =
Rl

l + 1

√
π(2l + 1)

∫ π

0

∂Pl(cos θ)

∂θ
α(R, θ) d θ (2.21)

The derivative of the Legendre polynomial is simply the associated Legendre polynomial

P 1
l (cos θ), so the al can be solved as

al =
Rl

l + 1

√
π(2l + 1)

∫ π

0
P 1
l (cos θ)α(R, θ) d θ =

Rl

l + 1

√
π(2l + 1)Al, (2.22)

where Al stands for the integral. This selection of the al coefficients will give a continuous

radial component of the magnetic field, but so far I have not imposed continuity on the θ

component of the field. Equating the value of Bθ just inside the star, as given by α, and

just outside the star, as given by the combination of the al, I have

(Bθ)r=R =

∞∑
l=1

al
Rl+2

√
2l + 1

4π

∂

∂θ
Pl(cos θ) = − 1

R sin θ

[
∂α

∂r

]
r=R

. (2.23)

13
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Solving for ∂α/∂r at the surface, I have the boundary condition required for the continuity

of the θ component of the field,[
∂α

∂r

]
r=R

= −
∞∑
l=1

al
Rl+1

√
2l + 1

4π
sin θP 1

l (cos θ), (2.24)

with al given by Eq. (2.22).

Another related calculation that turns out to be useful is that of the energy of the

external field, expressed as a sum over the energy of the individual multipoles. Using Eq.

(2.18), I have that the external magnetic energy is

Eext ≡
∫
r>R

B2

8π
dV =

∫
r>R

∇ · (Ψ∇Ψ)

8π
dV =

1

8π

∮
S

Ψ∇Ψ · dA, (2.25)

where S is a the surface of the star with its normal pointing towards the center1. Because

of this, ∇Ψ · dA = −R2(Br)r=R d Ω, and using the expansion of Ψ in terms of the alm of

Eq. (2.18) gives me

Eext = − 1

8π

∫
4π

∞∑
l=1

l∑
m=−l

alm
Rl−1

(Br)r=RYlm(θ, φ) d Ω =
1

8π

∞∑
l=1

l∑
m=−l

(l + 1)|alm|2

R2l+1
, (2.26)

where each term in the sum is the energy associated to the corresponding multipole. Of

course, under the assumption of axial simmetry, the only nonzero terms in this sum are

those with m = 0.

2.2 Ohmic modes

The simplest part of eqs. (2.11) is the linear one given by the Ohm terms. I want to know

precisely what are the decay timescales and the structure for the first eigenmodes of the

evolution due solely to Ohmic decay, as these play an important role in determining how

the relative intensities of the poloidal and toroidal components will evolve in the long run,

and also constitute an essential test to my numerical simulations. For the purposes of this

thesis, I only work with models of constant (both in time and space) resistivity, so, taking

1As was shown in Marchant et al. (2011), the term corresponding to the surface at infinity vanishes
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this into account, eqs. (2.11) can be rewritten without the nonlinear Hall terms as

∂α

∂t
= R−1

B ∆∗α,
∂β

∂t
= R−1

B ∆∗β, (2.27)

for which separable axially symmetric solutions can be readily obtained,

α(r, θ, t) = r [Ajl (kr) +Byl (kr)]P
1
l (cos θ) sin θe−t/τ , (2.28)

β(r, θ, t) = r [Cjl (kr) +Dyl (kr)]P
1
l (cos θ) sin θe−t/τ , (2.29)

where jl and yl are the spherical Bessel functions of order l. Also, k ≡ (τR−1
B )−1/2, and

the decay timescales τ and the ratios A/B and C/D depend on the boundary conditions

used for α and β.

Outside the star there will be no currents, so the function α must satisfy ∆∗α = 0, and

the separable solutions in this case are of the form

α =
E

rl
P 1
l (cos θ) sin θ, (2.30)

where E is fixed in terms of the boundary conditions at the surface. In this case, I require

continuity of both the radial and the angular derivatives of α at r = 1 (the surface in

dimensionless coordinates), where the latter of these conditions is equivalent to demanding

continuity of α through the surface. The third boundary condition is that α(rmin) = 0, so

the field does not pierce the superconducting core. Writing this, I have for the continuity

of α across the surface

Ajl (k) +Byl (k) = E, (2.31)

for the continuity of the radial derivative at the surface

Ajl (k) +Byl (k) +Akj′l (k) +Bky′l (k) = −lE (2.32)

and for the zero boundary condition at rmin

Ajl (krmin) +Byl (krmin) = 0. (2.33)

These three preceding equations can be converted into a transcendental equation for k and
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an equation for the ratio A/B (the value of E is irrelevant to us),

[
y′l(k)jl(krmin)− yl(krmin)j′l(k)

]
+

(l + 1)

k
[yl(k)jl(krmin)− yl(krmin)jl(k)] = 0

A

B
= −yl(krmin)

jl(krmin)
.

(2.34)

The different solutions of the transcendental equation will give the different radial modes

for each multipole.

For the toroidal field I have two possibilities, depending on the use of zero or Meissner

boundary conditions, so I deal with each of these cases separately.

• Zero BC: In this case I simply have the zero boundary condition at the surface,

Cjl (k) +Dyl (k) = 0, (2.35)

and the zero boundary condition at the inner radius,

Cjl (krmin) +Dyl (krmin) = 0. (2.36)

Just as with the poloidal field, these two equations can be combined into a transcen-

dental equation for k and another one for the ratio C/D,

jl(k)yl(krmin)− jl(krmin)yl(k) = 0

C

D
= −yl(k)

jl(k)
.

(2.37)

• Meissner BC: In this case I also have the zero boundary condition (2.35) at the

surface, but at the inner radius I must satisfy eq. (2.17), considering only the linear

Ohmic terms. This means that ∂β/∂r must vanish there, so

Cjl (krmin) +Dyl (krmin) + Ckrminj
′
l (krmin) +Dkrminy

′
l (krmin) = 0. (2.38)

Once again, I combine this equation with the zero boundary equation at the surface,
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n l kP A/B kT,zbc (C/D)zbc kT,mbc (C/D)mbc
1 1 7.03266 1.07456 12.67071 -0.18517 6.51570 -0.40499
2 1 19.12793 3.49901 25.18557 -0.09278 18.92115 -0.12505
3 1 31.58468 5.86928 37.73441 -0.06187 31.45856 -0.07454
1 2 7.81795 10.93545 12.87682 1.65544 6.95730 0.50269
2 2 19.46616 -0.78889 25.29089 3.52035 19.06358 2.56764
3 2 31.79340 -0.43334 37.80492 5.33887 31.54365 4.41324
1 3 8.63565 -2.11402 13.17984 -1.82690 7.57117 1.76415
2 3 19.86013 0.43365 25.44808 -0.61489 19.27532 -0.90844
3 3 32.04098 1.14319 37.91043 -0.38745 31.67087 -0.47628

Table 2.1: First three radial modes for each of l = 1, 2, 3. The kP are the values associated
to the poloidal modes, while kT,zbc and kT,scbc are the values for the toroidal modes in the
case of zero boundary conditions (for the subscript zbc) and Meissner boundary conditions
(for the subscript mbc).

and obtain a transcendental equation and an equation for C/D,

yl(krmin)jl(k)− yl(k)jl(krmin) + krminy
′
l(krmin)jl(k)− krminyl(k)j′l(krmin) = 0

C

D
= −yl(k)

jl(k)
.

(2.39)

Solving equations (2.34), (2.37) and (2.39) for l = 1, 2, 3 and up to the third radial mode

(for which I use the index n = 1, 2, 3), I obtain the values contained in Table 2.1. The

most important thing to be noted from these values is that with zero boundary conditions

the toroidal modes will decay much more rapidly than the corresponding poloidal modes,

while with the Meissner boundary conditions the poloidal modes decay slightly faster than

the toroidal ones.

2.3 Hall equilibria

Part of the purpose of this thesis is to test the stability of Hall equilibria, for which the

Hall term is exactly equal to zero. If I take Eqs. (2.7) and equate the Hall term to zero,
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then

∇α×∇β = 0 (2.40)

∇[χ∆∗α]×∇α+ β∇χ×∇β = 0. (2.41)

The first of these equations is satisfied if and only if β = β(α), which can be used on the

second equation to obtain that

∇[χ∆∗α+ χββ′]×∇α = 0, (2.42)

where β′ = dβ/dα. This in turn means that the function inside the brackets must be

a function of α, which I denote by F (α), so, after replacing χ = 1/($2n), I get that the

functions α and β describe a Hall equilibrium field if and only if

∆∗α+ ββ′ = F (α)nr2 sin2 θ, (2.43)

for an arbitrary function F (α). In this work I will only analyse a single purely poloidal

equilibrium field, which is the solution to this equation with the choice F (α) = F0 and

n = n0 constant. Looking for a separable solution of the form α = f(r) sin2 θ results in a

simple differential equation for the function f(r),

f ′′ − 2

r2
f = F0n0r

2. (2.44)

Lyutikov et al. (private communication) showed that a particular solution to this equation,

subject to zero boundary condition for α(rmin), a normalization such that the strength of

the field at the poles is B0 and a completely continuous magnetic field through the surface

(conditions which in turn fix the value of F0) is given in dimensionless form by the function

f(r) =
(3r5

min − 5r3
min)/r + 5r2 − 3r4

4− 10r3
min + 6r5

min

, (2.45)

so the equilibrium field I study is

α =
(3r5

min − 5r3
min)/r + 5r2 − 3r4

4− 10r3
min + 6r5

min

sin2 θ. (2.46)
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Numerical methods

For the purpose of studying the evolution of an axially symmetric field in a neutron star

crust, I have developed a FTCS (forward time centered space) code to solve the set of

differential equations (2.11), where the temporal discretization is done via the forward

Euler method, which is first order in time, while spatial derivatives are solved with a

central difference scheme that is second order in space. This code is freely available for

download at https://gitorious.org/hall_evolution/hall_evolution.

As is shown in Figure 3.1, the functions α and β are discretized in a regular spherical

grid with Nθ points in the θ direction (including the axis) and Nr points in the radial

direction (including the surface and the inner boundary) plus a point just outside the

surface and one just below the inner boundary. These two additional points are required

to set boundary conditions on the derivatives.

To describe the discretized values of the functions, I use the notation αki,j , where i and

j denote the grid points as shown in Figure 3.1, and k denotes the timestep. The numerical

method used for the temporal discretization of both equations is simply of the form

αk+1
i,j = αki,j + ∆t

(
∂α

∂t

)k
i,j

. (3.1)

However, the calculation of the time derivatives is done in fundamentally different ways

for each of these functions. For the time derivative of α, I simply use the usual three-point
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Figure 3.1: Spherical grid used to spatially discretize α and β.
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stencil approximation to all the derivatives involved,(
∂α

∂t

)k
i,j

=
sin θjχi,j
4∆r∆θ

[
(βki,j+1 − βki,j−1)(αki+1,j − αki−1,j)

−(βki+1,j − βki−1,j)(α
k
i,j+1 − αki,j−1)

]
+R−1

B ηi,j (∆∗α)ki,j ,

(3.2)

where θj = j∆θ and (∆∗α)ki,j is solved as

(∆∗α)ki,j =
αki+1,j + αki−1,j − 2αki,j

(∆r)2 +
αki,j+1 + αki,j−1 − 2αki,j

(rj)2 (∆θ)2

− cot θj
αki,j+1 − αki,j−1

2(rj)2∆θ
,

(3.3)

where rj = (i − 1)∆r + rmin. For the time derivative of β, I take advantage of the flux-

conservative properties of the equation, by using the discretization

1

sin θj

(
∂β

∂t

)k
i,j

=
1

∆r

([
χ∆∗α

∂α

∂θ
+ χβ

∂β

∂θ
+R−1

B

η

sin θ

∂β

∂r

]k
i+1/2,j

−
[
χ∆∗α

∂α

∂θ
+ χβ

∂β

∂θ
+R−1

B

η

sin θ

∂β

∂r

]k
i−1/2,j

)

+
1

∆θ

([
−χ∆∗α

∂α

∂r
− χβ∂β

∂r
+R−1

B

η

r2 sin θ

∂β

∂θ

]k
i,j+1/2

−
[
−χ∆∗α

∂α

∂r
− χβ∂β

∂r
+R−1

B

η

r2 sin θ

∂β

∂θ

]k
i,j−1/2

)
,

(3.4)

where (i±1/2, j) and (i, j±1/2) denote edge-centered values of the grid, solved for example

21



CHAPTER 3. NUMERICAL METHODS

as [
χ∆∗α

∂α

∂θ
+ χβ

∂β

∂θ
+R−1

B

η

sin θ

∂β

∂r

]k
i+1/2,j

=

χi+1/2,j

[∆∗α]ki+1,j + [∆∗α]ki,j
2

[∂α/∂θ]ki+1,j + [∂α/∂θ]ki,j
2

χi+1/2,j

[β]ki+1,j + [β]ki,j
2

[∂β/∂θ]ki+1,j + [∂β/∂θ]ki,j
2

+
R−1
B ηi+1/2,j

2 sin θj

(
βki+1,j − βki,j

∆r

)
,

(3.5)

from which the mesh-centered values are solved using the regular three-point approximation

for the derivatives of α and β together with eq. (3.3) for ∆∗α, and the remaining edge-

centered values can be solved exactly. The main feature of the discretization given by eq.

(3.4) is that the time derivative of the quantity

F =

Nr∑
i=1

Nθ−1∑
j=1

βki,j
sin θj

(3.6)

will depend only on boundary values of the functions and its derivatives. This embodies

the-flux conservation property of the equation for β.

For the evolution of β, I use eq. (3.4) for the grid points with 2 ≤ i ≤ Nr − 1 and

1 ≤ j ≤ Nθ − 1. For the case of α, eq. (3.2) is used to solve the evolution for the grid

points with 2 ≤ i ≤ Nr and 1 ≤ j ≤ Nθ − 1. All other points on the grid are evolved using

information from the boundary conditions.

3.1 Boundary conditions

In this section, I describe how the boundary conditions described in §2.1 are implemented

in this finite difference-scheme. The zero boundary conditions are trivial, but the condition

for α at the surface and the Meissner boundary conditions must be treated with care.

For the surface of the star, I have the boundary condition given by eq. (2.24), which
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can be expressed in finite difference (and dimensionless form) as

αkNr+1,j − αkNr−1,j

2∆r
= −

L∑
l=1

lal

√
2l + 1

4π
sin θjP

1
l (cos θj). (3.7)

This expression gives the value of αkNr+1,j at each timestep. The sum must be limited to

a finite number of multipoles L, and the al are given by eq. (2.22), but with the integral

solved using the trapezoidal rule,

al =
l

l + 1

√
π(2l + 1)

Nθ−1∑
j=0

(αkNr,j + αkNr,j+1)

2
P 1
l (cos θj+1/2)∆θ. (3.8)

To evolve the function α right at the surface it is necessary to evaluate the radial derivative

of β. For this purpose, I set βkrmin+1,j in such a way that the derivative at the surface is

the same as solving the derivative backwards, i.e.

βkrmin+1,j − βkrmin−1,j

2∆r
=
βkrmin,j − β

k
rmin−1,j

∆r
. (3.9)

To implement the Meissner boundary conditions given by eqs. (2.17), I solve for αk0,j and

βk0,j from the discretized versions of these,

0 =χ1,jβ
k
1,j

βk1,j+1 − βk1,j−1

2∆θ
+R−1

B

η1,j

sin θj

βk2,j − βk0,j
2∆r

0 = sin θjχ1,j

βk1,j+1 − βk1,j−1

2∆θ

αk2,j − αk0,j
2∆r

+R−1
B η1,j

αk2,j + αk0,j
(∆r)2

,

(3.10)

from which I get

βk0,j =βk2,j +
RB

ni,jηi,jr2
min sin θj

∆r

∆θ

(
βk1,j+1 − βk1,j−1

)
αk0,j =αk2,j

(βk1,j+1 − βk1,j−1)∆r + 4ni,jηi,jR
−1
B r2

min sin θj∆θ

(βk1,j+1 − βk1,j−1)∆r − 4ni,jηi,jR
−1
B r2

min sin θj∆θ
.

(3.11)

Unfortunately, the denominator in this last expression can get very close to zero, causing

numerical problems for simulations with large RB. Better stability can be achieved with
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grids that have Nr > Nθ, for which the grid will much more defined in the radial direction

than the angular one.

The only thing remaining is a way to time-evolve βk1,j for the Meissner boundary con-

ditions. To do this, I use a modified form of eq. (3.4),

1

sin θj

(
∂β

∂t

)k
1,j

=
1

∆r/2

([
χ∆∗α

∂α

∂θ
+ χβ

∂β

∂θ
+R−1

B

η

sin θ

∂β

∂r

]k
1+1/2,j

−
[
χ∆∗α

∂α

∂θ
+ χβ

∂β

∂θ
+R−1

B

η

sin θ

∂β

∂r

]k
1,j

)

+
1

∆θ

([
−χ∆∗α

∂α

∂r
− χβ∂β

∂r
+R−1

B

η

r2 sin θ

∂β

∂θ

]k
1,j+1/2

−
[
−χ∆∗α

∂α

∂r
− χβ∂β

∂r
+R−1

B

η

r2 sin θ

∂β

∂θ

]k
1,j−1/2

)
.

(3.12)

Noting that αk1,j = 0 together with the first of the Meissner boundary conditions (2.24)

implies that the first of the terms in the previous equations is equal to zero, I have that

1

sin θj

(
∂β

∂t

)k
1,j

=
1

∆r/2

[
χ∆∗α

∂α

∂θ
+ χβ

∂β

∂θ
+R−1

B

η

sin θ

∂β

∂r

]k
1+1/2,j

+
1

∆θ

([
−χ∆∗α

∂α

∂r
− χβ∂β

∂r
+R−1

B

η

r2 sin θ

∂β

∂θ

]k
1,j+1/2

−
[
−χ∆∗α

∂α

∂r
− χβ∂β

∂r
+R−1

B

η

r2 sin θ

∂β

∂θ

]k
1,j−1/2

)
.

(3.13)

3.2 Variable time step

Usually it will be the case that some time intervals in the simulation will require a much

smaller ∆t to converge without producing numerical instabilities. Since Hall drift will

advect field lines with the electron velocity ve = −j/(ne), I have a Courant condition of

the form

|ve|∆t
∆l

< kc, (3.14)
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where kc < 1 is chosen at the beginning of each simulation and ∆l is the smaller dimension

of a grid cell. Using that j = c(∇×B)/(4π), the timestep is solved as

∆t = kc

(
4πne

c

)
∆l

|∇ ×B|
, (3.15)

which is exactly the same condition used by Viganò et al. (2012). Considering that in the

thin crust, unless Nθ is much larger than Nr, the smallest dimension of a grid cell will

always be ∆r, the critical timestep in dimensionless form is

∆t = kc
n∆r

|∇ ×B|
. (3.16)

At each step of the simulation, this is evaluated at all points in the grid, and the smallest

value is chosen. In order to avoid having the timestep increase indefinitely as Ohmic

diffusion becomes dominant, I also define a dissipative timestep,

∆t = kc
(∆r)2

η
, (3.17)

and the smallest of the two values is used at each step of the simulation.

Although in principle I need kc < 1, in the simulations performed for this thesis nu-

merical problems arose when kc was chosen close to unity, sometimes requiring values as

small as kc = 0.01 for the simulations to converge. The need for such small timesteps

might be related to the use of purely explicit (and first order in time) methods for the time

evolution.

3.3 Test cases

Now I consider two tests applied to the code to see if it describes the evolution correctly:

(1) comparison of simulations with pure Ohmic decay with the analytical solutions, (2)

evolution of purely toroidal fields and comparison with the results of Urpin and Shalybkov

(1991), and (3) a comparison with the spectral code used by Hollerbach and Rüdiger (2002,

2004).
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3.3.1 Ohmic modes

Testing the evolution through pure Ohmic dissipation is straightforward, because I know

exact analytical solutions, which is not the case of combined Hall+Ohm simulations. This

is a two-step process: it must be verified that the decay rates are solved correctly, and that

the evolution of an Ohm mode preserves its structure. I describe here this analysis only

for the fundamental mode for the case of constant resistivity, but this was done also for

higher order modes with successful results.

In order to verify that the structure of Ohm modes is preserved, I perform simulations

using the fundamental toroidal and poloidal Ohm modes as initial conditions, and after

0.1tOhm, I evaluate in every point of the grid1

Ai,j = 1−
αfinali,j

αinitiali,j e−0.1k211p
, Bi,j = 1−

βfinali,j

βinitiali,j e−0.1k211t
, (3.18)

where k11p and k11t are the values listed in §2.2 for the fundamental poloidal and toroidal

Ohm modes respectively, and the final and initial superscripts indicate the values at the

end and the beginning of the simulation. These values should all be very close to zero, with

a general digression from that value due to the difference in the numerical and analytical

decay rates, and a slight difference from point to point due to the difference in structure

between the numerical and analytical modes. As the resolution is improved, these values

should all approach zero. The timestep used is given by the critical timestep for Ohmic

diffusion described in §3.2, with kc = 0.1. Figs. 3.2 and 3.3 show Ai,j and Bi,j respec-

tively plotted for different resolutions and zero boundary conditions, and it is seen that

as resolution improves, agreement between the structure of the numerical and analytical

Ohm modes improves. However, the toroidal field shows an important error on the lowest

resolution case, but this is just due to a large timestep which artificially produces much

stronger dissipation (this is not observed in the poloidal field, probably because its decay

timescale is much larger).

For the case of the poloidal modes, however, there is a systematic disagreement near

the poles that is closely related to errors in the coefficients of the multipolar expansion.

For the fundamental mode, which is a pure dipole, all multipole coefficients except for a1

1The time 0.1tOhm is enough to visualize the full impact of Ohmic dissipation, as, for instance, the decay
timescale of the fundamental poloidal Ohm mode is ∼ 0.02tOhm
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Figure 3.2: Plots of Ai,j as described in Eq. (3.18) for different resolutions. From left to
right and top to bottom, the resolutions used are 10×30×6, 20×60×12, 30×90×18 and
40× 120× 24, where the numbers represent Nr, Nθ and the maximun multipole L used in
the multipole expansion. It can be seen that the values approach unity as the resolution is
improved. The errors in the poles are due to errors in the calculated multipole coefficients.
The width of the crust is doubled to aid visualization.
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Figure 3.3: Plots of Bi,j as described in Eq. (3.18) for different resolutions in the case of
zero boundary conditions. From left to right and top to bottom, the resolutions used are
10 × 30, 20 × 60, 30 × 90 and 40 × 120, where the numbers represent Nr and Nθ. It can
be seen that the values approach unity as the resolution is improved. However, very low
resolution grids produce a significant error in the numerical solution, that can be fixed by
reducing the timestep. The width of the crust is doubled to aid visualization.
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Figure 3.4: Plots of Ai,j as described in Eq. (3.18) with Nr = 30 and Nθ = 90, but with
different numbers of multipoles used. From left to right, the maximun multipole used is
L = 1, 9, 27. As more multipoles are used, the systematic error to the pole increases. The
width of the crust is doubled to aid visualization.

should be equal to zero, however errors from the numerical integrations produce nonzero

values on higher order multipoles which are responsible for this systematic error. Fig. 3.4

shows how Ai,j changes by using a different number of multipoles. As can be seen, the

number of multipoles used must be significantly smaller than Nθ, otherwise, an important

disagreement between the analytical and numerical solutions occurs. So, in order to be on

the safe side, in all simulations made for this thesis the maximum number of multipoles

used does not exceed L = 0.2Nθ.

The same analysis was repeated for the toroidal field in the case of Meissner boundary

conditions, and the results were very similar to the ones of Fig. 3.3, except the lowest

resolution had a better agreement, probably because the decay timescale with Meissner

boundary conditions is much larger.

So, the structure of the modes is well resolved by my simulations, and what is left is to

check the numerical values obtained for the k11p and k11t. This is done by fitting the decay

of the poloidal and magnetic energies, and the results of doing this are contained in Table

3.1, where it is seen that the numerical values approach the analytical ones as resolution

is improved. These values are probably more dependant on the size of the timestep than

the spatial resolution, but I did not check explicitly for that.
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Resolution (Nr ×Nθ × L) τ11p τ11t without Meissner τ11t with Meissner

10× 30× 6 0.0202314 0.0061070 0.0235731
20× 60× 12 0.0202220 0.0062171 0.0235589
30× 90× 18 0.0202204 0.0062261 0.0235565
40× 120× 24 0.0202198 0.0062279 0.0235557

Analytical 0.0202191 0.0062287 0.0235547

Table 3.1: Numerical values for the decay timescales of the fundamental poloidal and
toroidal modes (τ11p and τ11t respectively) measured in terms of τOhm for different res-
olutions, compared to the known analytical values. Errors on the numerical values are
not shown, since they are much smaller than the number of significant digits shown. The
timesteps used for each of the resolutions are 7.72 × 10−5, 1.73 × 10−5, 7.43 × 10−6 and
4.11× 10−6 in units of tOhm.

3.3.2 Purely toroidal fields

As said in §2, purely toroidal fields remain toroidal under Hall drift. Urpin and Shalybkov

(1991) already studied this case, considering a star with constant electron density and

resistivity that through its entire radius evolves via Hall drift and Ohmic diffusion. They

showed that the field drifted towards the surface, where it forms a very strong current

sheet with the consequence of rapid Ohmic dissipation. As RB increases, this current

sheet becomes stronger, producing faster dissipation (however, this is not the case if the

electron density decreases towards the surface (Reisenegger et al. 2007)). These results are

shown in Fig. 3.5.

An older version of the code developed could deal with purely toroidal fields when

rmin = 0, but the current one is not designed to cope with that. Even though a direct

comparison was made with the work of Urpin and Shalybkov (1991) using the older code,

here I present results using the current version, with the field restricted to a crust of size

0.25R. I care most about the qualitative behaviour rather than the detailed quantitative

evolution, so this will suffice. Fig. 3.6 shows the evolution of the fundamental toroidal Ohm

mode, where it is shown that the field drifts to the surface producing a strong current sheet,

where it undergoes rapid dissipation until the evolution becomes dominated by Ohmic

diffusion. From that point forward, the field starts settling back to the fundamental Ohm

mode.
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Figure 3.5: Evolution of the fundamental toroidal Ohm mode in a homogeneous star with
no core (i.e. rmin = 0). The plot on the left shows the decay of magnetic energy as a
function of time measured in units of the decay timescale of the fundamental toroidal Ohm
mode for RB = 0, 25, 50, 200. On the right contours of the toroidal magnetic field are
shown for different snapshots of a simulation with RB = 25, showing the field drifting to
the surface. Figures taken from Urpin and Shalybkov (1991).

t/t_h: 0 t/t_h: 0.121174 t/t_h: 0.278769 t/t_h: 1.16761 t/t_h: 5.57396 t/t_h: 9.9803

Figure 3.6: Contours of toroidal magnetic field for the evolution of the fundamental toroidal
Ohm mode in a model star with rmin = 0.75 and RB = 100. The field drifts to the
surface producing strong currents and dissipation. The width of the crust is doubled to
aid visualization.
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Figure 3.7: Evolution of the energy of the toroidal field as a function of time measured in
units of the decay timescale of the fundamental toroidal Ohm mode.

3.3.3 Comparison with Hollerbach’s spectral code

Through our collaborator Jaime Hoyos from the “Universidad de Medelĺın” in Colombia,

I had access to the spectral code used in the simulations of Hollerbach and Rüdiger (2002,

2004). He ran 2 test cases in order to compare them with the code developed for this thesis.

As Hollerbach’s code only supports zero boundary conditions, the tests were restricted to

these. The choice of initial conditions were combinations of the fundameental poloidal and

toroidal Ohmic modes for zero boundary conditions described in §2.2 for rmin = 0.75, with

the following choice of coefficients,

• Test 1: A = −0.16764 and C = −2.00235, which gives a predominantly toroidal field.

(i.e. the energy of the toroidal component is significantly larger than the energy of

the poloidal component)

• Test 2: A = −0.55882 and C = −.60070, which gives a predominantly poloidal field.

The resolution used when running these simulations with Hollerbach’s spectral code was

an expansion in terms of 25 radial and 25 latitudinal modes, so I ran the simulations

with my code using 25 radial and 25 latitudinal grid points with L = 5 for the multipole
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Figure 3.8: Snapshots at two different times in the evolution of both test cases of §3.3.3.
The color plot shows the intensity of β, while the contours are lines of constant α The size
of the crust is doubled to ease visualization. For both images, the plot on the left is done
with the code developed for this thesis, while the one on the right is done with Hollerbach’s
spectral code. The plots on the left are for the first test case, at a time t = 0.2tHall with
Hollerbach’s code, and t = 0.194tHall with the code developed for this thesis. The plots on
the right are for the second test case, at a time t = 0.7tHall with Hollerbach’s code, and
t = 0.701tHall with the code developed for this thesis. The difference in time is due to the
adaptative timestep used in the simulations done with my code.

expansion outside the star. The simulations were ran using RB = 100, and Figs. 3.8 and

3.9 show snapshots of the structure of the field and the evolution of the magnetic energy

respectively. It can be seen that even at this very low resolution both the structure and

the energetics are very consistent for simulations done with each of the codes. Differences

can be seen on the structure of the field obtained, but these are most likely due to the

mismatch between simulation times compared (due to the adaptative code not allowing

a precise simulation time to be logged), and that Hollerbach’s code outputs values of β

and α in points which are not evenly spaced in the latitudinal direction, which at this low

resolution can produce notorious differences in the visualization. Also, the evolution of the

energies of the poloidal and toroidal components shows some differences, which are larger

for the first test case. This differences can be attributed in part to a slight difference in the

result of computing the energies with one code or the other, as can be seen from the initial

energies not matching precisely. The larger mismatch on the first case is expected, as the
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evolution in this case produces structure smaller scales which cannot be properly resolved

with the low resolution used, and in fact, performing simulations with my code and higher

resolutions gave slightly different results for this case, though keeping the overall behavior,

which indicates that at this low resolution the results have not converged yet.

Since the implementation of the Hollerbach’s spectral code is significantly different from

ours, and it also includes an additional criteria over the evolution of the energy to check

for the validity of its results, the very positive outcome of this comparison is indicative

that the implementation is correct, at least for the case of zero boundary conditions.
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Figure 3.9: Evolution of the toroidal and (internal) poloidal energies for both test cases
of §3.3.3 as a function of t/tHall. “M” (standing for Marchant) refers to simulations done
with the code developed for this thesis, while “H” refers to the code used by Hollerbach
and Rüdiger (2002, 2004).
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Results and analysis

4.1 Fields with dominant poloidal or toroidal components

During the testing of the code, it became apparent that in models with constant electron

density and resistivity the evolution was significantly different depending on whether the

poloidal or the toroidal component is dominant, a fact that was independently discovered

and published by Kojima and Kisaka (2012). However, their analysis is not very detailed,

and it is not very clear how they normalize their fields in order to compare each case. As

the value of RB is fundamentally dependent on the meaning I give to the characteristic field

B0, it is desirable to choose this value in a physically unambiguous way. For the purpose

of this section, I will consider combinations of the fundamental poloidal and fundamental

toroidal Ohmic modes, chosen in such a way that the total magnetic energy (including the

energy of the field outside the star) satisfies

E =
B2

0

8π
Vcrust, (4.1)

where Vcrust is the volume of the crust. Defining B11p and B11t, the fundamental poloidal

and toroidal modes, in such a way that each of these satisfy the previous equation, I study

combinations of the form

B =
√

(EP /E)B11p +
√

(1− EP /E)B11t, (4.2)
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Figure 4.1: Expansion of the crust for visualization purposes. The plot on the left shows
the field given by Eq. (4.2) with EP /E = 0.5, and the crust and outer region in their
correct sizes. The color plot is for the toroidal field function β, while the contours are
for the poloidal field function α. On the left the same field is plotted, but with the crust
size and the radial distance from the surface size doubled so field lines do not appear
discontinuous.

all of which have the same total energy, and for which the relevance of each component

is given by the ratio of poloidal to total energy EP /E. For most of the analysis I will

use zero boundary conditions, and compare in the end for some cases how the results are

modified by the inclusion of Meissner boundary conditions. This is mainly because the

Meissner boundary conditions as implemented here are prone to numerical problems, and

cases of high RB are computationally expensive to study. In the normalization used here,

the maximum value of B11t is of the order of 1.75B0, which can be compared for instance

with the normalization used by Hollerbach and Rüdiger (2002), who choose Bmax = B0.

The practical meaning of this is that my simulations with predominantly toroidal fields

done with RB = 100 should be comparable to their simulations with RB = 200.

In order to visualize the results of the simulations, I will plot the values of β as a color

scale together with contour lines of α, which represent field lines. The size of the crust

chosen for the simulations is R − rmin = 0.25R, and in the plots the width of the crust

will be shown expanded to 0.5R, together with an appropriate rescaling outside the star
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Figure 4.2: Fraction of the external energy contained in a dipole for different initial values
of EP /E. As the toroidal field becomes more important, energy is transferred to higher
multipoles at the beginning of the evolution. Fields with a larger toroidal component
rapidly decay, thus increasing the effective Hall timescale, so oscilatory phenomena after
the first peak in multipole energy happens much slower than for poloidally dominated
fields.

in order for poloidal field lines not to look discontinuous. This deformation is explicitly

shown in Fig. 4.1.

In order to properly explore how the poloidally dominated regime is separated from

the toroidally dominated one, I perform simulations using the field of Eq. (4.2) with

EP = 1, 0.9, 0.7, 0.5, 0.3 and 0, 1. For all these simulations I use a resolution of 30 radial

and 150 angular steps, and a factor of the critical timestep that varies between kc = 0.01

and kc = 0.025 (for higher values of kc the simulations present numerical issues). As

an example, Figs. 4.3 and 4.4 show the simulations with EP /E = 0.9 and EP /E = 0.1

respectively. As can be seen from this plots, the poloidally dominated field evolves with

what appears to be stable oscillations, without much digression from the original dipole

field, but the toroidally dominated field concentrates field lines much closer to one of the

poles, which transfers a lot of energy to higher order multipoles, as shown in Fig. 4.2.
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Figure 4.3: Evolution of a poloidally dominated field given by Eq. (4.2) with EP /E = 0.9.
The current associated to the toroidal field drags poloidal field lines to one of the poles,
after which the bending of poloidal field lines completely changes the direction of the
toroidal field. The poloidal field lines are then dragged to the opposite pole, where the
process is repeated until the evolution is dominated by Ohmic dissipation with a mixture
of the fundamental poloidal Ohm mode and the n = 1, l = 2 toroidal Ohm mode.
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t/t_h: 0 t/t_h: 0.0514843 t/t_h: 0.0837368 t/t_h: 0.10847 t/t_h: 0.119095

t/t_h: 0.132347 t/t_h: 0.141337 t/t_h: 0.149303 t/t_h: 0.157537 t/t_h: 0.163412

t/t_h: 0.169679 t/t_h: 0.178225 t/t_h: 0.195143 t/t_h: 0.221196 t/t_h: 0.268222

t/t_h: 0.363891 t/t_h: 0.469857 t/t_h: 0.592603 t/t_h: 1.11245 t/t_h: 2.20945

t/t_h: 3.69578 t/t_h: 5.18211 t/t_h: 6.66843 t/t_h: 8.15476 t/t_h: 9.64108

Figure 4.4: Evolution of a toroidally dominated field given by Eq. (4.2) with EP /E = 0.1.
The currents associated to the toroidal field drag poloidal field lines to one of the poles, just
as was the case with the poloidally dominated field. The toroidal field produces structure
on smaller scales that rapidly dissipates while it also feeds energy to the poloidal field.
which eventually becomes dominant, behaving in what follows just as described before for
an initially dominant poloidal field.
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Another major feature that is readily visible is that the toroidal field forms much smaller

structures with stronger currents associated. This produces very strong field dissipation,

that drives the field to equipartition, and from that point forward, the poloidal field be-

comes progressively more dominant. After reaching the poloidally dominant configuration,

the field evolves through regular oscillations. Eventually, Hall drift becomes irrelevant due

to the dissipation of the field, and Ohmic decay turns the field into a combination of the

fundamental poloidal Ohm mode, together with the l = 2, n = 1 toroidal Ohm mode.

The rapid evolution to a poloidally dominant field can be easily visualized by plotting the

evolution of the ratio of poloidal to total magnetic energy, as is done in Fig. 4.5. The

two scenarios then do not seem so disconnected, as toroidally dominated fields will quickly

increase their EP /E ratio, both via rapid Ohmic dissipation and energy transfer to the

poloidal field, until the poloidally dominated regime is reached, from which point the evo-

lution will proceed with stable oscillations until Ohmic dissipation overcomes the whole

evolution. For simulations with progressively stronger toroidal fields, more energy will be

lost in this stage of rapid Ohmic dissipation, producing oscillations with longer periods

when they reach the poloidally dominant regime. In particular, Fig. 4.5 and 4.4 show that

for the case that starts with EP /E = 0.1 no clear oscillatory behavior occurs, as Ohmic

dissipation quickly becomes dominant.

It is interesting that the final configuration dominated by Ohmic dissipation has a

quadrupole toroidal field rather than a dipole which has a slower decay rate. This is due to

the fact that the dominant poloidal dipole field acting on itself due to Hall drift produces

a quadrupolar toroidal field.

4.1.1 Comparision with Meissner boundary conditions

To check whether the inclusion of superconductor boundary conditions modifies signifi-

cantly the evolution, I perform four additional simulations with RB = 50, two for each

case of EP /E = 0.1 and EP /E = 0.9, with and without Meissner boundary conditions.

However, since combinations of the form of Eq. (4.2) will not satisfy the boundary condi-

tions initially, I choose a modified toroidal field given by

Bt = (r − rmin)B̂11t (4.3)
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Figure 4.5: Evolution of the ratio EP /E for simulations with different initial ratios. Pre-
dominantly toroidal fields evolve quickly past equipartition to a poloidally dominant field
where they follow stable oscilations with the ratio EP /E going asymptotically to 1. The
predominantly toroidal simulation with an initial value EP /E = 0.1 shows a somewhat
different behavior, but still evolves to a predominantly poloidal field.
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This field has zero radial derivative and zero value at the crust-core interface, and thus,

will satisfy the Meissner boundary conditions. I rescale the energy of this field as was done

before, and construct the combinations with the energy ratios just mentioned before.

The results shown in Fig. 4.6 show that the evolution on short timescales does not

change much, although the simulations with zero boundary conditions have a slightly

enhanced energy dissipation. However, for longer timescales where Ohmic dissipation

becomes the dominant effect, simulations with Meissner boundary conditions evolve to

predominantly toroidal configurations, which consists in the fundamental Ohm mode as

shown in Fig. 4.7. This is completely different to the case with zero boundary conditions,

where Ohmic dissipation drives the field to a poloidally dominated configuration. The

long time it takes to reach this final configuration with Meissner boundary conditions is

due to the similarity of the decay rates of the fundamental toroidal mode and the toroidal

quadrupole.

Unlike the simulations with zero boundary conditions, where the poloidal field acting

on itself caused the toroidal quadrupole to remain in the long run even though it has a

faster decay rate, the dominant toroidal mode will not produce a higher poloidal multipole,

since the Hall term in the equation for ∂α/∂t depends on the intensities of both and thus

will never dominate over the Ohmic dissipation of the poloidal field.

4.1.2 Symmetry-preserving initial conditions

At this point, the claim that toroidally dominated fields quickly evolve to a poloidally

dominated scenario cannot be done in a general sense. This is not only due to the very

simplified model of the crust, but also because the conclusions are drawn from a set of

scenarios for which the geometry of the field is essentially the same. To extend the analysis,

I consider a combination of poloidal and toroidal fields which will evolve preserving the

initial symmetries,

B =
√
EP /EB11p +

√
1− EP /EB21t, (4.4)

which is a combination of the fundamental poloidal Ohm mode and a quadrupolar toroidal

field. The fact that this field will preserve its symmetry (i.e. α will remain symmetric with

respect to the equator and β will remain antisymmetric), is given by the discussion at the

end of §2. The results of simulations with RB = 100 for fields of the form of Eq. (4.4)
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Figure 4.6: Evolution of total, toroidal and poloidal energies with respect to the total initial
energy for the toroidally dominant (top 2 plots) and the poloidally dominant (bottom 2
plots) configurations described in §4.1.1, up to t/tHall = 30.
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t/t_h: 0 t/t_h: 0.113452 t/t_h: 0.191213 t/t_h: 0.500388 t/t_h: 1.80203

t/t_h: 3.13973 t/t_h: 4.47742 t/t_h: 5.81511 t/t_h: 7.15281 t/t_h: 8.4905

t/t_h: 9.82819 t/t_h: 11.1659 t/t_h: 12.5036 t/t_h: 13.8413 t/t_h: 15.179

t/t_h: 16.5167 t/t_h: 17.8544 t/t_h: 19.192 t/t_h: 20.5297 t/t_h: 21.8674

t/t_h: 23.2051 t/t_h: 24.5428 t/t_h: 25.8805 t/t_h: 27.2182 t/t_h: 29.8936

Figure 4.7: Evolution of the toroidally dominated field given in §4.1.1 with Meissner bound-
ary conditions.
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t/t_h: 0 t/t_h: 0.0195661 t/t_h: 0.0254804 t/t_h: 0.031196 t/t_h: 0.0396942

t/t_h: 0.0445964 t/t_h: 0.0562535 t/t_h: 0.0754477 t/t_h: 0.0975613 t/t_h: 0.126373

t/t_h: 0.175326 t/t_h: 0.18215 t/t_h: 0.200448 t/t_h: 0.231494 t/t_h: 0.269472

t/t_h: 0.308575 t/t_h: 0.38689 t/t_h: 0.468061 t/t_h: 0.593909 t/t_h: 0.762375

t/t_h: 1.2318 t/t_h: 1.84505 t/t_h: 2.21522 t/t_h: 2.5868 t/t_h: 2.95839

Figure 4.8: Evolution of the field described by Eq. (4.4) with RB = 100, EP /E = 0.1
and zero boundary conditions. The toroidally dominated field rapidly decays, reaching a
poloidally dominated regime where some oscilations are observable before the field starts
to settle due to Ohmic dissipation.
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Figure 4.9: Evolution of the field described by Eq. (4.4) for the ratios of poloidal to total
energy EP /E = 0.1 and 0.9. The plot on the left shows the evolution of the total energy,
while the plot on the right shows the evolution of the ratio of poloidal to total energy.
Just as with the previous cases, the toroidally dominated field is affected by rapid Ohmic
dissipation and eventually reaches the poloidally dominated regime.

are shown in the plots of Fig. 4.9, and snapshots of the toroidally dominated simulation

are shown in Fig. 4.8. The evolution of the fields fits the framework already described for

the regimes of either poloidally or toroidally dominated fields, where a poloidally dominant

field has stable oscillations, while a toroidally dominant field efficiently loses energy until it

reaches a configuration where the poloidal field is dominant. Moreover, simulations mixing

B31p and B21t (not shown here) behave just the same, with the case of the poloidally

dominated field oscillating without significantly changing its l = 3 structure. Other com-

binations do not retain such a similarity with the initial conditions as they evolve, but

they follow the general behavior that initially poloidally dominated fields end up having

stable oscillations while initially toroidally dominated fields quickly lose toroidal magnetic

field energy until they reach the poloidally dominated regime, which needs not resemble

the initial choice of modes used.

The question remains now, if this behaviour is extended in any way to realistic, stably

stratified models for the crust.
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4.2 Stability of Hall equilibria

In order to study the stability of the Hall equilibrium given by eq. (2.46), I perform

simulations for RB = 50, 100, 200, 400. However, a slight numerical problem arose while

attempting to perform these simulations. The numerical resolution of ∆∗α right at the

surface depends on the radial derivative which is solved in terms of the multipolar ex-

pansion. This expansion was not precise enough, causing a small error in its resolution.

When time-evolving βkrnum−1,j
, a radial derivative of ∆∗α is needed, and the small error

in its calculation at the surface becomes more important. This is not an issue in the

non-equilibrium cases studied in the previous section, however, in the case of a Hall equi-

librium, the numerically calculated Hall terms in the evolution equation for β will all be

very close to zero expect for points right below the surface, producing a numerical artefact

that ends up dominating the evolution. In order to avoid this, the βkrnum−1,j
are evolved

by interpolation between the surface and βkrnum−2,j
,

βkNr−1,j =
1

2

(
βkNr−2,j + βkNr,j

)
=

1

2
βkNr−2,j , (4.5)

where the zero boundary condition at the surface was used. Since in these poloidally

dominated cases the toroidal field should not produce steep current sheets at the surface,

this approximation should not alter significantly the evolution.

As said in §2.3, the equilibrium field I use is solved using zero boundary conditions at

the core-crust interface, and so, I use this boundary condition when evolving this field. In

any case, as was shown in §4.1.1, the use of Meissner boundary conditions does not change

the early evolution significantly, and only becomes evident at later stages when Ohmic

decay becomes dominant, and so, the choice of boundary conditions is not expected to

play an important role in the stability of the equilibria.

As the field is affected by Ohmic decay, its structure will be modified, driving it out of

equilibrium and, thus, acting as a perturbation. The simplest test that can be done to see

if Hall drift plays an important role in modifying the structure of the field is comparing its

evolution with and without Hall drift, as is shown in Fig. 4.10, where it can be seen that

Hall drift only slightly enhances the rate of energy decay, which in the end is essentially

the decay rate for the energy of the fundamental poloidal Ohm mode.

Since the decay rate of the total energy of the field does not seem to be affected
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Figure 4.10: Decay of the equilibrium field in a coupled Hall+Ohm case with RB = 100,
compared with the case of pure Ohmic decay without Hall drift. It can be seen that the
decay timescale is not significantly modified by Hall drift

significantly by the presence of Hall drift, it is necessary to have a more sensitive measure

of the departure from the equilibrium field. For this purpose, I consider the time-dependent

field B(r, t), the initial equilibrium field Beq(r), and the fundamental poloidal Ohm mode

B11p(r) normalized as

B̂(r, t) =
B(r, t)∫

V (B(r, t))2 dV
,

B̂eq(r) =
Beq(r)∫

V (Beq(r))2 dV
,

B̂11p(r) =
B11p(r)∫

V (B11p(r))2 dV
,

(4.6)

where V is the volume of all space outside the core, i.e. r > rmin. The direction of the

Ohm field is chosen in such a way that it is equal to the direction of the equilibrium field,

i.e. so that B̂11p and B̂eq share the same magnetic north pole.
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In terms of these normalized fields, I define the quantities

δeq =

∫
V

(B̂(r, t)− B̂eq(r))2 dV, δohm =

∫
V

(B̂(r, t)− B̂11p(r))2 dV, (4.7)

where V is just as before the volume outside the crust. These deltas will measure the

difference in shape of the time-evolved field with respect to the initial equilibrium field and

the fundamental poloidal Ohm mode, to which eventually the system will decay. In order

to evaluate the integrals, I split them in the regions inside and outside the star,

δeq =

∫
Vcrust

(B̂ − B̂eq)
2 dV +

∫
r>R

(B̂
2 − 2B̂ · B̂eq + B̂

2
eq) dV, (4.8)

which, using the same procedure as in §2.1.3 to solve for the energy outside the star results

in

δeq =

∫
Vcrust

(B̂ − B̂eq)
2 dV +

∞∑
l=1

(l + 1)
(
|âl|2 − 2âlâl,eq + |âl,eq|2

)
, (4.9)

where âl and âl,eq denote the multipole coefficients of the normalized time-dependent and

equilibrium fields respectively. Since the equilibrium and the fundamental Ohm mode are

exact dipoles, the final expression for the deltas is

δeq =

∫
Vcrust

(B̂ − B̂eq)
2 dV − 4â1â1,eq + 2|â1,eq|2 +

∞∑
l=1

(l + 1)|âl|2,

δOhm =

∫
Vcrust

(B̂ − B̂11p)
2 dV − 4â1â1,11p + 2|â1,11p|2 +

∞∑
l=1

(l + 1)|âl|2.
(4.10)

Of course, when numerically computing these values, I restrict the summation up to the

maximum multipole L of the simulation.

The first simple test that has to be done is to check the evolution of δeq and δOhm for

the equilibrium field subject only to Ohmic dissipation. In this case, I expect the higher

modes that compose the field to rapidly decay, leaving only the fundamental Ohm mode.

Thus, δOhm will start with an initial non-zero value, δeq will be equal to zero, and with

time δOhm should asymptotically go to zero, while δeq should asymptotically go to the

value δOhm had initially. This is shown in Fig. 4.11, where it can be seen that around
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Figure 4.11: Evolution of δOhm and δeq in the case with no Hall drift. Note that the values
are much smaller than unity, indicating that the equilibrium field is very similar to the
fundamental Ohm mode.

t/tOhm ∼ 0.02 the equilibrium field has essentially decayed to the fundamental Ohm mode.

Now, adding Hall drift to the picture, Fig. 4.12 shows the evolution of δeq and δOhm

for different values of RB. The most obvious changes with respect to the previous results

are that the asymptotic evolution to the fundamental Ohm mode takes much longer, and

that a departure from both fields used as reference happens during the initial stages of

evolution. This departure scales with tOhm, meaning this that as I change RB this part

of the evolution remains nearly unchanged when plotted as a function of t/tOhm, so it is

not likely to be an instability driven by Hall drift. Small oscillations can be seen on top

of this curve, which gradually decrease their intensity and, most importantly, have periods

that scale with tHall. In any case, the departure from the equilibrium is very small, as

significant perturbations to the structure would produce deltas much closer to unity.

In order to better understand what this digression both from the initial equilibrium

field and the final fundamental Ohm mode means, I construct a simple spectral model of
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Figure 4.12: (left) Evolution of δOhm and δeq in the case with Hall drift. For different
values of RB = 50, 100. (right) Closeup to the beginning of the evolution, showing δOhm
for RB = 50, 100, 200, 400. The rise scales with tOhm while the small oscilations at the
beginning of the simulation scale with tHall.

the system in terms of the first few Ohmic modes,

B(t) ' a11(t)B̂11p + a21(t)B̂21p + a31(t)B̂31p

+a13(t)B̂13p + a23(t)B̂23p + a33(t)B̂33p

+b12(t)B̂12t + b22(t)B̂22t + b32(t)B̂32t

(4.11)

where the Ohmic modes B̂nlp and B̂nlt are the ones described in §2.2 for zero boundary

conditions, with the p and t subscripts denoting poloidal and toroidal modes respectively,

normalized in the same way as in Eq. (4.6). These modes are then orthonormal, and the

energy of each component is simply its coefficient anl or bnl squared and multiplied by

(8π)−1. The exclusion of toroidal modes with l = 1, 3 and poloidal modes with l = 2 is

done because of the symmetry properties discussed at the end of §2, which indicate that

for this field α will remain symmetric with respect to the equator, while β will always be

antisymmetric. These symmetries are explicitly seen in the simulations, so if any symmetry-

breaking instability exists, which could be induced because the numerical initial conditions

will not be perfectly symmetric (or antisymmetric), it is not observed and thus I ignore it

in this analysis.

Just as before, the direction of the fields is relevant, and it should be defined in an
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unambiguous way. I will consider all 6 poloidal modes chosen in such a way that they are

aligned with the equilibrium field (which means Br(r = R, θ = 0) > 0) and all toroidal l = 2

modes in such a way that right below the surface of the Northern hemisphere (0 < θ < π/2)

the azimuthal component Bφ is positive. Decomposing the equilibrium field in terms of

the Ohm modes so defined I get

Beq ' 3.840B̂11p − 0.224B̂21p + 0.134B̂31p − 0.051B̂41p, (4.12)

where also the component on the fourth radial mode was included for comparison. If the

energy of the equilibrium field is computed, and compared with the energy of the dipole, it

is seen that ∼ 99.5% of the energy comes from it while the other three components shown

add up a ∼ 0.48% of the total energy. It seems reasonable to assume that the remaining

components will not affect the evolution significantly, but even so, for simplicity I do not

take the a41 coefficient into account in my model, although for the initial condition it is

not much smaller than the a21 or the a31 components.

I now decompose the dimensionless version of Eq. (1.4) with constant electron density

and resistivity,

∂B

∂t
= −∇× ([∇×B]×B)−R−1

B ∇× (∇×B) , (4.13)

in terms of the Ohm modes. The Ohmic term is trivial, but the Hall term requires numerical

integrations to obtain all the relevant terms. Since a11 is much larger than all other terms

at the beginning, and the simulations show that the structure of the field does not change

substantially, I ignore all non-linear terms that do not contain this coefficient. The Hall
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term is then approximated as

−∇× ([∇×B]×B) '− a2
11∇× ([∇× B̂11p]× B̂11p)

− a11a21∇× ([∇× B̂11p]× B̂21p + [∇× B̂21p]× B̂11p)

− a11a31∇× ([∇× B̂11p]× B̂31p + [∇× B̂31p]× B̂11p)

− a11a13∇× ([∇× B̂11p]× B̂13p + [∇× B̂13p]× B̂11p)

− a11a23∇× ([∇× B̂11p]× B̂23p + [∇× B̂23p]× B̂11p)

− a11a33∇× ([∇× B̂11p]× B̂33p + [∇× B̂33p]× B̂11p)

− a11b12∇× ([∇× B̂12t]× B̂11p)

− a11b22∇× ([∇× B̂22t]× B̂11p)

− a11b32∇× ([∇× B̂32t]× B̂11p).

(4.14)

For the initial values a11,i = 3.840, a21,i = −0.224, and a31,i = 0.134, the Hall term is

approximately zero,

0 '− a2
11,i∇× ([∇× B̂11p]× B̂11p)

− a11,ia21,i∇× ([∇× B̂11p]× B̂21p + [∇× B̂21p]× B̂11p)

− a11,ia31,i∇× ([∇× B̂11p]× B̂31p + [∇× B̂31p]× B̂11p)

. (4.15)

Defining γ1(t), γ2(t) and γ3(t) as

a11(t) = γ1(t)a11,i, a21(t) = (γ1(t) + γ2(t))a21,i a31(t)(γ1(t) + γ3(t))a31,i, (4.16)

and combining this with Eqs. (4.14) and (4.15), the approximation for the Hall term can
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be written as

−∇× ([∇×B]×B) '− a11,ia21,iγ1γ2∇× ([∇× B̂11p]× B̂21p + [∇× B̂21p]× B̂11p)

− a11,ia31,iγ1γ3∇× ([∇× B̂11p]× B̂31p + [∇× B̂31p]× B̂11p)

− a11a13∇× ([∇× B̂11p]× B̂13p + [∇× B̂13p]× B̂11p)

− a11a23∇× ([∇× B̂11p]× B̂23p + [∇× B̂23p]× B̂11p)

− a11a33∇× ([∇× B̂11p]× B̂33p + [∇× B̂33p]× B̂11p)

− a11b12∇× ([∇× B̂12t]× B̂11p)

− a11b22∇× ([∇× B̂22t]× B̂11p)

− a11b32∇× ([∇× B̂32t]× B̂11p).

(4.17)

Defining δ2 and δ3 as

δ2 =

(
a21 − a11

a21,i

a11,i

)
, δ3 =

(
a31 − a11

a31,i

a11,i

)
, (4.18)

Eq. (4.17) can be written as

−∇× ([∇×B]×B) '− a11δ2∇× ([∇× B̂11p]× B̂21p + [∇× B̂21p]× B̂11p)

− a11δ3∇× ([∇× B̂11p]× B̂31p + [∇× B̂31p]× B̂11p)

− a11a13∇× ([∇× B̂11p]× B̂13p + [∇× B̂13p]× B̂11p)

− a11a23∇× ([∇× B̂11p]× B̂23p + [∇× B̂23p]× B̂11p)

− a11a33∇× ([∇× B̂11p]× B̂33p + [∇× B̂33p]× B̂11p)

− a11b12∇× ([∇× B̂12t]× B̂11p)

− a11b22∇× ([∇× B̂22t]× B̂11p)

− a11b32∇× ([∇× B̂32t]× B̂11p).

(4.19)

I decompose this in terms of the Ohmic modes by numerical integration, after which,

including the Ohmic dissipation terms, Eq. (4.13) turns into nine differential equations for
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the coefficients anl and bnl,

ȧ11 =− λ11pa11 + 1.927a11b12 − 1.555a11b22 − 0.450a11b32

ȧ21 =− λ21pa21 + 28.964a11b12 + 23.269a11b22 − 6.559a11b32

ȧ31 =− λ31pa31 − 6.394a11b12 + 77.274a11b22 + 67.760a11b32

ȧ13 =− λ13pa13 + 13.937a11b12 − 5.771a11b22 − 1.466a11b32

ȧ23 =− λ23pa23 + 2.930a11b12 + 55.121a11b22 − 15.401a11b32

ȧ33 =− λ33pa33 + 0.578a11b12 + 35.594a11b22 + 121.469a11b32

ḃ12 =− λ12tb12 − 27.741a11δ2 + 6.172a11δ3 − 11.268a11a13 − 4.786a11a23 − 0.242a11a33

ḃ22 =− λ22tb22 − 24.332a11δ2 − 76.529a11δ3 + 3.642a11a13 − 53.480a11a23 − 36.763a11a33

ḃ32 =− λ32tb32 + 7.124a11δ2 − 68.440a11δ3 + 0.925a11a13 + 14.494a11a23 − 120.394a11a33,

(4.20)

where λ = R−1
B k2, with the k given for each mode in §2.2. This set of equations can be

solved numerically via the forward Euler method. Fig. 4.13 shows some results for δOhm

using RB = 100, 200, and the corresponding values from the full-fledged simulations are

included for comparison. Although it is evident that the quantitative agreement is not

very good, with the simplified model producing a maximum δOhm that is only half that

seen in the simulations, the qualitative agreement is very good. Both the rise that scales

with tOhm and the oscillations that scale with tHall can be clearly seen, and the frequency

of the oscillations seems to fit that of the full simulation. Moreover, since the model has a

complete decomposition of the fields I can see exactly what modes are responsible for this

rise of the deltas, and it turns out that a strong octupolar component develops.

Going back to the simulations to verify the presence of this octupolar component, Fig.

4.14 shows the evolution of the ratio of external energy contained in the octupole to total

external energy. Clearly there is a rise that scales with tOhm, and although the octupole

only reaches about 3% of the total external energy, it is enough to explain the rise in δeq

and δOhm.

Although this model helps understand what is going on, it is not much less of a black

box than the original simulation. However, I have seen that the octupole component play

a crucial role in the evolution. In order to get more information from Eq. (4.20), I add

further simplifications, first of all reducing the number of modes used to a11, a21, b12, and

a13. No fewer modes than this could possibly explain the evolution. Ignoring also the
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Figure 4.13: (left) Evolution of δOhm and δeq with the simple few-modes model, compared
to the results from the full fledged simulations. (right) Close-up to the beginning of the
simulation.
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Figure 4.14: Evolution of the ratio of external energy contained in the octupole to total
external energy in the simulations with RB = 100, 200.
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effects of Ohmic dissipation to study only the effect of the Hall term, I obtain a much

smaller and simpler system of equations

ȧ11 =1.927a11b12

ȧ21 =28.964a11b12

ȧ13 =13.937a11b12

ḃ12 =− 27.741a11δ2 − 11.268a11a13.

(4.21)

I combine the first two equations in order to produce an equation for δ̇2 to use instead of

the equation for ȧ12,

δ̇2 = 28.964a11b12 − 1.927a11b12
a21,i

a11,i
(4.22)

= 29.076a11b12. (4.23)

The final approximation I make is to assume a11 constant. This should be descriptive of

the behaviour of the system at the beginning of the evolution, and leaves me with a 3× 3

system of differential equations, δ̇2

ȧ13

ḃ12

 = a11

 0 0 29.076

0 0 13.937

−27.741 −11.268 0


 δ2

a13

b12

 . (4.24)

This system of equations, describing evolution purely through Hall drift around the equilib-

rium, has two imaginary eigenvalues ±31.043a11i, which describe oscillations with a period

0.209a−1
11 tHall, resulting for the initial value of a11 in a period of 0.054tHall, which is close

to the actual period of the observed oscilations. The system also has a zero eigenvalue,

with solutions that do not evolve in time,

b12 = 0, −27.741δ2 − 11.268a13 = 0. (4.25)

What this means is that, if I slightly modify the equilibrium field in such a way that

this relation is satisfied, the Hall term will be zero (at least in this approximation to

the full effect). This seems to be an explanation for the evolution of δeq and δOhm: As

Ohmic dissipation modifies the equilibrium field, oscillations will happen around close-by
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equilibria, where the octupole component increases in order to compensate the change in δ2,

which is due to the faster dissipation of the n = 2, l = 1 component. Eventually, however,

Hall drift will become unimportant, and Ohmic dissipation will drive the magnetic field

configuration to the fundamental Ohm mode.
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Conclusions

Although Hall drift was proposed as a relevant mechanism for magnetic field evolution in

neutron stars more than two decades ago, theoretical results on its effects have not been

very conclusive. The non-linear nature of this process has made analytical studies of it

very complicated, and numerical simulations have become essential to acquire a better

understanding of it.

In this thesis, a finite-difference code has been developed to study the evolution of

axially symmetric magnetic fields in neutron star crusts through the combined effects of

Hall drift and Ohmic diffusion. The code was tested by checking if it properly reproduced

Ohmic decay modes, and comparing the results for the evolution of purely toroidal fields

with previous work by Urpin and Shalybkov (1991). Also, Jaime Hoyos, a collaborator of

us, had access to the code used by Hollerbach and Rüdiger (2002). Identical simulations

were done with both codes, showing a remarkable agreement. Unlike most of the previous

simulations implemented, I have properly implemented boundary conditions for the crust-

core interface in the case that magnetic field is completely expelled from the interior due

to the Meissner effect.

Two different problems were treated with this code, both in the simplified model of

constant electron density and resistivity. The first of these, the evolution of either pre-

dominantly poloidal or predominantly toroidal fields was treated by Kojima and Kisaka

(2012), who showed that a predominantly toroidal field is affected by rapid Ohmic dissi-

pation, transfering energy to the poloidal mode in the process. In contrast, a poloidally

dominant configuration would evolve through periodic oscillations, only slightly enhancing
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decay. I performed a more detailed analysis of this, checking that after the strong field

dissipation happens on a toroidally dominant field, it transitions to stable oscillations in

a predominantly poloidal configuration. Most of the tests were performed using a combi-

nation of the fundamental poloidal and toroidal Ohm modes, but further exploration on

more complex geometries showed that the process has a more general validity. Inclusion

of Meissner boundary conditions did not have an important impact on the early evolution,

but significantly affected the evolution when Ohmic decay became relevant. Whether this

behaviour that separates poloidally and toroidally dominated fields is also present in re-

alistic stratified models of neutron stars, remains to be seen. Even if Hall drift produces

structure on smaller scales, this may happen in the innermost regions of the crust, where

Ohmic dissipation will not do much unless the structures continue cascading to smaller

scales. Some very preliminary simulations with stratified electron density, which are not

discussed in this thesis, seems to indicate that this is effectively what happens.

The second problem concerned the stability of a known, an analytically obtained, purely

poloidal Hall equilibrium. This field was evolved using the developed code, letting Ohmic

diffusion act as a natural perturbation to drive the system away from equilibrium. Even if

the equilibrium was stable, the continuous effect of Ohmic decay would have been expected

to produce progressively larger perturbations, but on the contrary, a slow departure from

the initial equilibrium was observed, which scaled with the Ohmic timescale, and had

oscillations of progressively smaller amplitude. Construction of a simple spectral model

using Ohm modes showed that a strong octupole component was developed, and closer

inspection of the model allowed me to see that this equilibrium is not isolated and has close-

by points for which the Hall term is also zero, at least in an approximate sense considering

the approximations done. This allows the field to adjust to external perturbations, only

slightly modifying its structure, and avoiding large-amplitude variations until Ohmic decay

becomes dominant. However, this situation may only be present in this axially symmetric

case, as the inclusion of the extra dimension could cause a host of instabilities not observable

in my model.

If similar stable equilibrium configurations exist for stratified stars, and supposing that

these do not become unstable when the assumption of axial simmetry is removed, it would

have very important consequences for the observational properties of magnetars. Objects

with similar field strengths could be very different, behaving as very active SGRs if the

initial field is too far away from an equilibrium configuration, or as relatively quiescent
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and bright AXPs in the opposite case. The analysis done for this thesis should then be

extended to models with a realistic electron density profile in order to see if the conclusion

holds.

Currently, the work developed in this thesis constitutes a first step towards a more

complete picture of magnetic field evolution in neutron stars, and much more work can

be done on top of it. Starting first by purely technical details, the numerical methods

used are not very elaborate, and a much better precision and stability might be achievable

by using, for instance, methods that are second order in time. With respect to physical

problems, the assumption that the field is restricted to the crust could be dropped, al-

lowing for magnetic field evolution inside the core of the star. Relating to the study of

field stability, extending the code to three dimensions might prove particularly useful, in

particular considering that full 3D studies of this problem are practically inexistent (for

instance, Wareing and Hollerbach (2010) deals with 3D simulations done on periodic carte-

sian boxes). Moreover, in ordinary MHD the instabilities of similar field configurations are

non-axisymmetric (Tayler (1973), Markey and Tayler (1973)), and if this holds true for

Hall MHD too, then 3D simulations would be essential to perform an stability analysis.
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