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Abstract

In 1977, Flowers and Ruderman described a perturbation that destabilized a purely dipolar magnetic

field in a star. They considered the effect of cutting the star in half along a plane parallel to the

symmetry axis and rotating each half 90 degrees in opposite directions, which would cause the energy

of the magnetic field in the exterior of the star to be greatly reduced, just as it happens with a pair

of aligned magnets. We formally solve for the energy of the external magnetic field and check that it

decreases monotonously along the entire rotation. We also describe the instability using perturbation

theory, and see that it happens due to the work done by the interaction of the magnetic field with

surface currents. Finally, we consider the stabilizing effect of adding a toroidal field by studying the

internal energy perturbation when the rotation is not done along a sharp cut, but with a continuous

displacement field that switches the direction of rotation across a region of small but finite width. Using

these results, we estimate the relative strengths of the toroidal and poloidal field needed to make the

star stable to this displacement and see that the energy of the toroidal field required for this is much

smaller than the energy of the poloidal field.
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Introduction

Large-scale magnetic fields are known to be present in a wide variety of stellar objects, meaning

that in these stars the dipole component (together perhaps with some other low-order multipoles)

is not much weaker than the rms surface field. The initial discovery of such fields was on Ap stars

(Babcock 1947). Since then, they have been observed or inferred to exist in white dwarfs, neutron

stars, upper-main-sequence stars, and in the central stars of planetary nebulae (e.g. Kemp et al.

(1970), Angel et al. (1974), Henrichs et al. (2003), Jordan et al. (2005)). Also, these fields appear

to be long-lived, since they do not evolve in a timescale accesible to observations.

A common feature of all these objects is that, over most of their structure, they are stably stratified.

White dwarfs and neutron stars have no significant convective regions1, while upper-main-sequence stars

only have a small convective core. Dynamo effects are therefore expected to be irrelevant in keeping

the strength of the magnetic field constant. Also, it can be seen that all these objects have very similar

magnetic fluxes on their surfaces, Φmax = πR2Bmax ∼ 1027.5 G cm2, where Bmax is the highest surface

dipole strength detected each class of objects. These two features are considered compelling arguments

in favor of flux freezing during stellar evolution. Also, it can be seen that the ratio of fluid to magnetic

pressure is (Reisenegger 2009)

β =
8πP

B2
∼

8π3GM2

Φ2
∼ 3× 106

(

M

M⊙

)2 (

Φ

Φmax

)−2

, (1)

which is a very high number even for the most strongly magnetized stars. Also, β is similar for all the

objects mentioned. Since this ratio is so high, we do not expect these fields to significantly modify the

1Recently formed neutron stars are convective for some seconds, and white dwarfs have a thin convective region on
their surface.
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structure of the star. However, they can play a major role in its evolution.

Even though these long-lived fields have been known to exist for more than half a century, it has

not been possible to find an analytic model for a field that is in a stable equilibrium. However, stable

configurations have been found to exist via numerical calculations (Braithwaite & Nordlund 2006),

where an initially random field usually evolves into an approximately axisymmetric configuration that

is a combination of toroidal and poloidal components of similar energies. In these simulations, once a

stable configuration has been achieved, the decay of the field is driven by Ohmic dissipation, and it can

be seen to evolve in a timescale comparable to the lifetime of the star.

The stability of purely poloidal or purely toroidal fields has also been studied in the past. Tayler

(1973), using the energy method, proved that every purely toroidal field is unstable on an Alfvén

timescale, independent of the strength of the field. Markey & Tayler (1973, 1974) and independently

Wright (1973) discovered that purely poloidal fields with closed lines contained inside the star are

also unstable. These instabilities are very similar to the kink instabilities in a z-pinch. For toroidal

fields, the region close to the symmetry axis resembles this type of pinch, and the same occurs near the

magnetic axis of poloidal fields. The fundamental difference with a kink instability is the restriction

that in stably stratified stars displacements perpendicular to equipotential surfaces are unlikely to be

unstable, since the magnetic pressure is significantly smaller than the fluid pressure. For the same

reason, it is expected that unstable displacements ξ are nearly incompressible (i.e. ∇ · ξ ≃ 0).

A simple argument given by Flowers & Ruderman (1977) shows that any poloidal field with field

lines extending outside the star should be unstable. If the initial configuration is such that the external

field resembles a dipole, cutting the star in half and rotating each half by 90 degrees in opposite

directions would greatly reduce the dipole component of the field, leading to a magnetic field with less

energy. However, neither Flowers and Ruderman nor anyone else has ever given a formal proof of this

argument.

In the numerical simulations of Braithwaite (2007, 2009), instabilities related to the poloidal field

are studied. In the latter work mentioned, using the stable configurations found after simulating the

evolution of random fields, Braithwaite used different ratios of poloidal to total energy of the magnetic

field EP /E and saw the field to be stable for EP /E smaller than 0.8 but larger than 0.056. The

field became unstable for EP /E greater than 0.8, with an m = 2 mode that seems to consist mostly
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of displacements in latitude of the fluid. Braithwaite also notes that the m = 0 and m = 1 modes

are not physically possible, since they would break the conservation of linear and angular momentum,

respectively. At ratios over EP /E = 0.9, higher modes became unstable, as would be expected since

these modes have to overcome a higher resistance from the toroidal field. Braithwaite (2007) considers

the stability of purely poloidal fields with closed field lines inside the star, and found them to be unstable

with a mode much higher than m = 2. The displacement in both cases resembles a kink instability, as

mentioned above.

In this work, I formally prove the Flowers and Ruderman’s instability for the case in which the

external field is that of a pure dipole. I then study the stabilizing effect of a toroidal field and the

relative strength of toroidal and poloidal components required to stabilize the star against Flowers and

Ruderman’s instability.

The structure of this report is the following: In Chapter 1, I formally prove Flowers & Ruderman’s

instability for a pure dipole field, by solving exactly the energy of the external magnetic field during

the entire process. Using perturbation theory, I see that the instability is caused by the effect of

surface currents on the star. In Chapter 2, I consider the stabilizing effect of a toroidal field when the

perturbation is not done with a sharp cut through the star, but rather with a displacement field that

switches continuously from one direction of rotation to the other, over a thin but finite region. I show

than under some reasonable assumptions the energy of the toroidal magnetic field required to stabilize

the star is much smaller than that of the poloidal field. In chapter 3, I present my general conclusions

and discuss ongoing work in which I try to construct a displacement field in order to reproduce the

results obtained by Braithwaite (2009).



Chapter 1

Flowers & Ruderman’s instability

for a pure dipole field

Flowers & Ruderman (1977) claimed that stars with purely poloidal fields were unstable to a fluid

displacement where the star was cut in half and each piece was rotated 90 degrees in opposite directions,

generating a quadrupole, which should have less energy than the initial configuration. The argument

was given as an analogy with two aligned magnets, in which case, the antiparallel configuration has less

energy. However, the star in its interior preserves the magnitude but changes the direction of the field,

while the magnets preserve their magnetization, and the field along them does not have a constant

magnitude.

In this chapter, I present a formal proof of Flowers & Ruderman’s instability for the case in which

the external field is that of a point dipole. In §1.1 I provide a formal proof of the instability by exactly

solving the energy of the external field along the entire rotation. I start in §1.1.1, by obtaining a general

expression for the external magnetic energy for an arbitrary field. In §1.1.2, I prove that under certain

conditions that are valid for the displacement done in Flowers & Ruderman’s instability, the final state

of the star will have less energy than the initial one, as long as the initial configuration of the external

field is a pure dipole. In §1.1.3, I use the expression for the external magnetic energy obtained in §1.1.1

to complete the proof by showing that the external energy of the field is a monotonous function of the

angle of rotation, which, coupled with the result of §1.1.2, completes the proof of Flowers & Ruderman’s

1
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instability. In §1.2, I demonstrate how this instability can be understood using perturbation theory.

Although the proof using perturbation theory will not be as complete as the one given in §1.1, the

results obtained are useful for the work described in the following Chapters.

1.1 Proof of Flowers and Ruderman’s instability by an exact

evaluation of the energy

If I completely ignore the effects of the magnetic field over the hydrostatic structure of the star,

then the star should be perfectly spherical, and when Flowers and Ruderman’s instability takes place,

each half of the star rotates as a rigid solid. Since in stellar interiors the magnetic Reynolds number is

significantly larger than 1, field lines will be dragged by the fluid without modyfing the magnitude of

the magnetic field at each point, and thus, the internal magnetic energy of the star will not be modified

in the process1. Therefore, we are only interested then in the energy of the external magnetic field, and

I now proceed to prove that this energy is in fact reduced by performing the displacement described in

Flowers and Ruderman’s instability.

1.1.1 Exterior energy of an arbitrary magnetic field

To start, I must obtain the magnetic field outside the star, given the field on its surface. Because

outside the star there are no currents, we have ∇×B = 0 and therefore B = ∇Ψ. Since ∇ ·B = 0, Ψ

must satisfy Laplace’s equation. The general solution to Laplace’s equation in spherical coordinates is

given by

Ψ(r, θ, φ) =

∞
∑

l=0

l
∑

m=−l

[

almrl +
blm
rl+1

]

Ylm(θ, φ). (1.1)

All the coefficients alm must be equal to zero since Ψ must tend to zero as r goes to infinity, thus

Ψ(r, θ, φ) =
∑

lm

blm
rl+1

Ylm(θ, φ). (1.2)

1It is important to note that the plane that cuts the star cannot cross any field lines, otherwise, to rotate each half
these field lines should be cut, and that is not possible.
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The values for blm can be solved because the component of the magnetic field normal to the surface of

the star must be continuous, so

(

∂Ψ

∂r

)

r=R

= (B · r̂)r=R (1.3)

−
∑

lm

(l + 1)
blm
Rl+2

Ylm(θ, φ) = (B · r̂)r=R, (1.4)

and using the orthonormality of spherical harmonics, I can get

blm = −
Rl+2

l + 1

∫

4π

dΩ(B · r̂)r=RY
∗
lm(θ, φ). (1.5)

The final result is clearer if I define coefficients clm such that

blm = −
Rl+2

l + 1
clm =⇒ Ψ(r, θ, φ) = −

∑

lm

Rl+2clm
rl+1(l + 1)

Ylm(θ, φ). (1.6)

Now, the magnetic energy inside the star should not change, since the field only rotates while keeping

its magnitude. However, the exterior field changes significantly. Thus, the variation of the magnetic

energy can be solved just by solving the variation outside of the star. The exterior magnetic energy is

obtained from

E =

∫

V

dV
B2

8π
=

∫

V

dV
(∇Ψ)2

8π
=

1

8π

[
∫

V

dV∇ · (Ψ∇Ψ)−

∫

V

dVΨ∇2Ψ

]

(1.7)

=
1

8π

∫

V

dV∇ · (Ψ∇Ψ) (1.8)

where V covers all space outside the star. Using the divergence theorem, the energy can be expressed

as a surface integral, with a normal inward to the star:2

E =
1

8π

∮

S

(Ψ∇Ψ)r=R · d s. (1.9)

2The surface of integration in this case consists in the surface of the star, plus a surface at infinity. If I consider this
last surface as a sphere of radius r centered at the star, then its area goes like r2. From Ψ, it can be seen that the term
that decreases less significantly with r goes like r−1, and thus, the corresponding terms for ∇Ψ will go like r−2. So,
in the limit in which r → ∞, the integral corresponding to this surface will go like r−1, so when I take the surface at
infinity, this term does not contribute, and I only need to consider the term with the surface of the star.
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Since I consider the star to be perfectly spherical, ∇Ψ · d s = −R2(B · r̂)r=R sin θ d θ dφ on the surface

of the star, and consequently

E = −
R2

8π

∫

4π

(ΨB · r̂)r=R dΩ = −
R2

8π

∫

4π

(Ψ∗B · r̂)r=R dΩ (1.10)

where in the last step, I used the fact that the energy is real and set it equal to its conjugate. Replacing

the expression for Φ, I get the following result:

E =
R3

8π

∑

lm

∫

4π

c∗lm
l + 1

Y ∗
lm(θ, φ)(B · r̂)r=R dΩ =

R3

8π

∑

lm

|clm|2

l + 1
. (1.11)

Summing up, the energy of the external magnetic field is

E =
R3

8π

∑

lm

|clm|2

l + 1
clm =

∫

4π

Y ∗
lm(θ, φ)(B · r̂)r=R dΩ . (1.12)

1.1.2 Proof that the final energy is less than the initial one

The results contained in (1.12) are enough to obtain a formal proof of Flowers & Ruderman’s

instability. To do so, let us define a quantity Υ as

Υ =
R3

8π

∫

4π

(

B2
r

)

r=R
dΩ. (1.13)

This quantity will be conserved when the star is cut in half and rotated. So, using the superscripts i

and f to denote initial and final states, Υi = Υf . If I use the spherical harmonics expansion for the

field outside the star to express one of the terms of
(

B2
r

)

r=R
, I get

Υ =
R3

8π

∫

4π

(Br)r=R

[

∑

lm

clmYlm(θ, φ)

]

dΩ (1.14)

=
R3

8π

∑

lm

clm

∫

4π

(Br)r=R Ylm(θ, φ) dΩ (1.15)

=
R3

8π

∑

lm

|clm|2. (1.16)
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By rewriting Υi = Υf , I obtain

R3

8π

∑

lm

|cflm|2 =
R3

8π

∑

lm

|cilm|2. (1.17)

If the initial external field is that of a point dipole, the only nonzero cilm is ci10. Considering this,

dividing the above expression by 2 results in

R3

8π

∑

lm

|cflm|2

2
=

R3

8π

|ci10|
2

2
. (1.18)

From here, using (1.12) and noting that c00 must be equal to zero both in the initial and final state

because it represents a monopole, I get:

Ef ≤
R3

8π

∑

lm

|cflm|2

2
=

R3

8π

|ci10|
2

2
= Ei. (1.19)

Thus, the final state will have less or equal energy than the initial one. The equality will hold if and only

if the cflm are equal to zero when l 6= 1, which is not the case in Flowers & Ruderman’s instability since

the severe discontinuity that is produced cannot be resolved into an expansion of spherical harmonics

with a finite number of terms. The result given in (1.19) not only holds for Flowers & Ruderman’s

instability, but for any perturbation that keeps Υ constant. Perhaps studying the conditions that the

displacement field must satisfy in order for Υ to be kept constant might allow us to discover other

interesting instabilities that affect poloidal fields, but I will not deal with that problem in this work.

It is important to note, however, that I only proved that the magnetic energy of any final state after

cutting the star and rotating it is less than that of the initial energy of the dipole field. I have yet to

prove that the energy is monotonously decreasing for the entire rotation. So, up to this point, we could

expect the minimun energy to be present at some intermediate point in the rotation, and not after the

rotation has been completed.

1.1.3 Proof that the energy decreases monotonously

The boundary condition on the magnetic field required on the surface of the star, so the external

field is a pure dipole, is that the radial component satisfy (Br)r=R = BP cos θ, where BP is the strength

of the field on the surface exactly at the symmetry axis. Since the internal field is irrelevant to the
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problem (as long as no field lines are cut during the process), I will consider a uniform magnetic field

B = BP ẑ inside the star. This field satisfies the required boundary condition, and proving Flowers &

Ruderman’s instability for it will be enough as a proof for any other field that is a pure dipole in the

exterior. Since the external field in this case is that of a point dipole, the final energy must be smaller

than the initial one, as I proved in the previous section.

If the star is cut in half along a plane perpendicular to the x axis, and each half of the star is rotated

by an angle Ω in opposite directions, I get

B =















BP (cosΩẑ − sinΩŷ) x > 0

BP (cosΩẑ + sinΩŷ) x < 0

(1.20)

for the field inside the star. Its radial component is3

B · r̂ =















BP (cosΩ cos θ − sinΩ sin θ sinφ) x > 0

BP (cosΩ cos θ + sinΩ sin θ sinφ) x < 0

(1.21)

Using (1.12), the external magnetic energy corresponding to the unperturbed state can be evaluated as

E0 =
B2

PR
3

12
. (1.22)

For the rotated case, the clm are

clm = cosΩBP

∫

4π

dΩ cos θY ∗
10 (1.23)

+BP sinΩ

[

∫ π

0

∫ 3π/2

π/2

sin2 θ sinφY ∗
lm dφd θ −

∫ π

0

∫ π/2

−π/2

sin2 θ sinφY ∗
lm dφd θ

]

. (1.24)

3Here I use the relation between basis vectors

r̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ
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Due to the symmetries of Ylm, it can be proved that

clm =



































BP cosΩ

∫

4π

dΩ cos θY ∗
10 l = 1,m = 0

2BP sinΩ

∫ π

0

d θ

∫ 3π/2

π/2

dφ sin2 θ sinφY ∗
lm l,m even

0 otherwise

(1.25)

Now, if I define wlm =

∫ π

0

d θ

∫ 3π/2

π/2

dφ sin2 θ sinφY ∗
lm, the energy can be rewritten as:

E = cos2 ΩE0 + sin2 Ω
R3B2

P

2π

∑

lm
even

|wlm|2

l + 1
= E0






cos2 Ω +

6 sin2 Ω

π

∑

lm
even

|wlm|2

l + 1






. (1.26)

Defining A =
6

π

∑

lm
even

|wlm|2

l+ 1
, the energy can be rewritten in a compact form as

E = E0

[

1 + sin2 Ω(A− 1)
]

. (1.27)

Since the complete rotation is obtained with Ω = π/2, the energy is a monotonous function of Ω.

If A > 1 the energy will be an increasing function, but if A < 1, it will be a decreasing function.

However, we already know that the final energy is smaller than the initial one, thus A < 1 and the

energy decreases monotonously along the entire rotation. Therefore, Flowers & Ruderman’s instability

is present in the case of the purely dipolar field.

Even though we already proved the existence of the instability, an estimate of A is called for. To

obtain this estimate, I consider the quantity

g(l) =
6

π

l
∑

m=−l

|wlm|2

l + 1
. (1.28)

A log-log plot for these values is shown in figure 1.1 for l ranging from 6 to 18. A good fit can be

achieved by the function g(l) = 2.5303 · l−2.8871 (I ignored the values for l=2, 4 because they did not fit

well with the rest of the data). I use this power law to estimate the result of the sum in A for the terms
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 0.0001

 0.001

 0.01

 0.1

 10

g(
l)

l

Figure 1.1: Approximation of g(l) by a power law. Only the points from l = 6 to 18 are considered
because the points g(2) and g(4) don’t fit well with the rest of the data. It is found that a good fit
is obtained with g(l) = 2.5303 · l−2.8871

with l ≥ 6, and the exact values obtained for the terms with l = 2 and l = 4, which gives me a value

of A = 0.5697, while the direct sum of the terms up to l = 18 gives me A = 0.5685. As expected, this

value satisfies the condition A < 1 that is required for Flowers & Ruderman’s instability to be valid.

1.2 Proof of the instability using perturbation theory

Using MHD perturbation theory, I should also be able to prove the existence of Flowers & Ruder-

man’s instability. This proof however will not be as complete as the one given in 1.1, since perturbation

theory can only be used to see if the system is unstable against small displacements, and thus, I cannot

prove with this approach that the energy decreases monotonously along the entire rotation. Neverthe-

less, I now provide a proof of the instability using perturbation theory, since the results obtained in

doing so will be useful in the next Chapter.

In §1.2.1, I prove that for a certain family of axisymmetric magnetic fields for which the external

field is that of a dipole, the volume contribution to the internal energy perturbation is equal to zero.

In §1.2.2, I solve the contribution to the internal energy perturbation due to surface currents and show

that the final result directly relates with the energy given in (1.27).



CHAPTER 1. FLOWERS & RUDERMAN’S INSTABILITY FOR A PURE DIPOLE FIELD 9

1.2.1 Contribution to the internal energy perturbation inside the star

Using the energy principle from Bernstein et al. (1958), the stability of a system perturbed by a

displacement field ξ is given by the sign of the potential energy perturbation which can be written as

a sum of hydrostatic and magnetic terms

δW =δWhyd + δWmag,

δWhyd =
1

2

∫

[

Γ1P (∇ · ξ)2 + (ξ · ∇P )(∇ · ξ)− (ξ · ∇Φ)(∇ · ρξ) + ρξ · ∇δΦ
]

dV

−
1

2

∮

[Γ1P∇ · ξ + ξ · ∇P ] ξ · d s,

δWmag =−
1

2

∫

V

ξ · (δj ×B + j × δB) dV

(1.29)

where V now denotes the volume of the star. In here, P is the fluid pressure, ρ is the mass density, Φ

is the gravitational potential, Γ1 is defined as

Γ1 =
∂ lnP

∂ ln ρ
(1.30)

and j is the current density, that in the ideal MHD approximation can be solved as

4πj = ∇×B. (1.31)

The perturbed magnetic field and current are given by

δB = ∇× (ξ ×B), 4πδj = ∇× (∇× (ξ ×B)), (1.32)

and I will employ the Cowling approximation of neglecting perturbations of the gravitational potential

(i.e. δΦ = 0).

If δW < 0, then the resulting configuration will be unstable. Since in the stellar interior the magnetic

pressure is much smaller than the fluid pressure, I expect instabilities driven by the magnetic field to

minimize the magnitude of δWhyd. I ignore the effects of the magnetic field on the structure of the star,

so P , ρ and Φ are spherically symmetric. Considering this, if I use a displacement field that has no

radial component (which is reasonable due to the stable stratification of the objects we are interested



CHAPTER 1. FLOWERS & RUDERMAN’S INSTABILITY FOR A PURE DIPOLE FIELD 10

in), and is completely incompressible (i.e. ∇ · ξ = 0), the fluid contribution is exactly equal to zero,

and I only need to consider the magnetic terms in δW .

The displacement field for the case of Flowers & Ruderman’s instability is taken to be

ξ =















Ωrx̂× r̂ = −Ωr(cos θ cosφφ̂+ sinφθ̂) x > 0

−Ωrx̂× r̂ = Ωr(cos θ cosφφ̂+ sinφθ̂) x < 0

(1.33)

with |Ω| ≪ 1. This displacement field has no radial component and is incompressible, so there will be

no fluid contributions to δW .

For the magnetic field, I will consider configurations given by

B = ∇α×∇φ, α = f(r) sin2 θ. (1.34)

On the surface of the star, the radial component for these fields is
2f(R)

R2
cos(θ), and thus, outside

the star all these fields are pure dipoles. This model for the internal field covers a wide range of

axisymmetric configurations; the constant field studied in the previous section is just a particular case

in which f(r) = BP r
2/2 and the fields used by Braithwaite (2007) to study the stability of purely

poloidal fields are also of this form.

With this choice of ξ and B, the integrand of δWmag is found to be:

ξ · (δj ×B + j × δB) =
Ω2f

2πr2

(

d 2f

d r2
−

2f

r2

)

[

cos2 θ − sin2 θ sin2 φ
]

. (1.35)

Including the sin θ term from dV and performing the integral gives zero as a result.

However, we already saw that there is an effective variation of the energy when performing this

perturbation, and thus, we are not taking into account all the work that is done on the fluid. This large

scale displacement produces surface currents in two different regions, and these are responsible for the

work done:

• Along the surface of the sphere. Since the exterior field satisfies Laplace’s equation, and its

boundary conditions only requiere the normal component of B to be continuous, it is unlikely

that a large-scale displacement that affects the surface of the star will not produce a discontinuity
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of the tangential component of B in some areas. Thus, surface currents are an important element

for perturbations that affect the surface.

• Along the plane that cuts the star. The discontinuity produced by the rotation will produce a

current sheet along this plane.

From these two effects, only the first is really relevant to the energy of the star. The second effect is

not, because ξ,B, and j are parallel to that surface, and thus it does no work on the fluid.

1.2.2 Contribution to the internal energy perturbation due to surface cur-

rents

Due to the discontinuity of the θ and φ components of the magnetic field, a surface current will be

produced with components

4πKθ = Bφint −Bφext, 4πKφ = Bθext −Bθint. (1.36)

If the field is perturbed by a displacement ξ, then Bint changes to first order in ξ by δBint = ∇ ×

(ξ × Bint). This change will modify the boundary conditions for the exterior field, giving rise to a

perturbed exterior magnetic field

δBext = ∇δΦ, (1.37)

with

δΦ = −
∑

l,m

Rl+2δclm
rl+1(l + 1)

Ylm(θ, φ), δclm =

∫

4π

Y ∗
lm(θ, φ)(δB · r̂)r=R dΩ. (1.38)

This will give rise to a perturbed surface current with components

4πδKθ = δBφint − δBφext, 4πδKφ = δBθext − δBθint. (1.39)

Now, by replacing j by j + δ(r − R)K in (1.29) and performing the radial integral for the term with

the surface current and the one with the perturbed surface current the contribution to δW due to these
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terms can be written as4

δWsc = −
R2

2

∫

4π

(ξ · [K × δB + δK ×B])r=R dΩ. (1.40)

However, due to the discontinuity of B and δB along the boundary, the choice for these two vectors is

somewhat ambiguous. This can be avoided by considering only perturbations that are parallel to the

surface, so ξ = ξθθ̂ + ξφφ̂, in which case only the radial components of B and δB contribute to the

previous expression, and that expression reduces to

δWsc = −
R2

8π

[
∫

4π

δBrξ · (Bext −Bint) dΩ +

∫

4π

Brξ · (δBext − δBint) dΩ

]

. (1.41)

Here, it is not necessary to distinguish between the interior and exterior values of Br and δBr because

these must be continuous. The primary difficulty in this expression is the term δBext. However, by

explicitly writing that term and using integration by parts, it can be seen that5

−
R2

8π

∫

4π

Brξ · δBext dΩ =
R3

8π

∑

lm

|δclm|2

l + 1
, (1.42)

so this term is always positive, and thus does not drive the instability. This expression is still hard to

solve analytically in most cases. However, given a particular displacement field, it can be used in the

same way as I used the sequence g(l) in section 1.1.3 to obtain an estimate of A.

Now I consider the perturbation field given in (1.33) and the magnetic field given by (1.34). In this

case, the δclm are

δclm =















2BPΩ

∫ π

0

d θ

∫ 3π/2

π/2

dφ sin2 θ sinφY ∗
lm l,m even

0 otherwise

(1.43)

4Considering this, δWmag now consists on a volume integral and surface integral:

δWmag = −
1

2

∫
V

ξ · (δj ×B + j × δB) dV −
R2

2

∫
4π

(ξ · [K × δB + δK ×B])r=R dΩ.

5This result does not depend on the geometry of the magnetic field. The only requirement, is that the displacement
field be of the form ξ = ξθθ̂ + ξφφ̂ in the surface. Also, if the displacement field has a radial part, ξr r̂, then ∂rξr must
vanish on the surface.
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Using this, together with equation (1.42) I get

−
R2

8π

∫

4π

Brξ · δBext dΩ = Ω2E0A, (1.44)

where A has the same meaning as in §1.1.3. This gives me one of the terms of δWsc (as shown in

equation (1.41)). The other terms can be evaluated directly, giving me the result

−
R2

8π

[
∫

4π

δBrξ · (Bext −Bint) dΩ +

∫

4π

Brξ · δBint dΩ

]

= −Ω2E0. (1.45)

Considering equations 1.41, (1.44) and (1.45), the internal energy perturbation due to the surface

curents is found to be

δWsc = Ω2E0(A− 1) , (1.46)

which agrees with (1.27) up to order Ω2 as expected.

The ambiguity in (1.40) can also be solved in another way, which doesnt require the radial component

of the displacement field to vanish at the surface. In the equilibrium configuration, it is unlikely that

surface currents are present, because they would dissipate rapidly. Besides, strong surface currents

would be required to produce an important discontinuity in B, which is unlikely to happen because

the fluid density decreases drastically near the surface. This means that not only the r component

of the field must be continuous, but rather that the equilibrium equilibrium magnetic field must be

completely continuous along the boundary. This does not eliminate the ambiguity in the selection of

δB, but it does not matter because the first term in δWsc is zero.



Chapter 2

Smooth Flowers & Ruderman’s

instability

Now I consider the effects of performing the cut of the star smoothly across a region of finite width

2ǫR. The motivation behind this is that when a toroidal field is added in order to stabilize the star,

the flux through the plane that cuts it in half in Flowers & Ruderman’s instability is no longer zero.

Thus, if a sharp cut is done, magnetic field lines would be cut, which is not possible. Because of this,

an arbitrarily weak toroidal field is enough to stabilize the star against the sharp cut, but if the cut

is done smoothly as described above, toroidal field lines will not be cut, but instead will be severely

twisted. As ǫ increases, this bending will be less pronounced, and thus the stabilizing effect of the

toroidal field will be reduced. Under some reasonable assumptions, I use perturbation theory to obtain

a ratio between the energy of the poloidal field and the total energy of the magnetic field for which

the field becomes stable to this displacement. This value can be compared with the values obtained by

Braithwaite (2009) for which the field becomes unstable.

14
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To do this, I consider a displacement field of the form

ξ =































−Ω0rx̂× r̂ x < −ǫR

Ω(x)rx̂ × r̂ |x| < ǫR

Ω0rx̂× r̂ x > ǫR

(2.1)

where Ω(x) is a continuous, odd function in the interval |x| < ǫR that satthatisfies

Ω(±ǫR) =± Ω0,
dΩ

dx x=±ǫR
= 0. (2.2)

The condition imposed on the derivative is to avoid discontinuities in δB along the boundary, which

would in turn produce perturbed surface currents. Similar to the displacement field used before for the

sharp cut, ξ has no r̂ component, as expected from a stably stratified star, and it satisfies ∇ · ξ = 0, so

there will be no fluid contribution to δW .

The internal energy perturbation for this displacement field can be splitted into several terms,

including a term that involves surface currents, δWsc. This contribution to the internal energy per-

turbation involves surface integrals of an infinite number of spherical harmonics, and the fact that

the displacement field is defined in terms of cartesian coordinates adds great complexity in trying to

evaluate δWsc. Because of this, I consider that the smooth transition is done in a thin region relative

to the radius of the star, so ǫ ≪ 1, and I assume that δWsc does not change significantly with respect

to the value obtained for the sharp cut1. In any case, we expect δWsc to increase as ǫ increases, since

in this case the dipole component of the external magnetic field will not be reduced as much as was the

case for the sharp cut.

2.1 Cylinder approximation and toroidal fields

As a simple approximation to the region of transition (|x| < ǫR), I will consider it as a cylinder of

height 2ǫR and radius R. The coordinates in this system will be ̟ for the cylindrical radial coordinate,

1I do not expect the external magnetic field to be significantly different on the surface of the star for the region
|x| > ǫR, so the contribution to δWsc on this region should not change significantly. Also, the area of the surface in the
region |x| < ǫR is small compared to the rest of the surface in which the integral for δWsc is done, so even if there are
significant changes there, I do not expect them to significantly modify the work done on the whole surface.
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z′ oriented in such a way that ẑ
′ coincides with the previous Cartesian x̂, and the azimuthal angle

ϑ in such a way that ϑ = 0, z′ = 0 is equivalent to the previous Cartesian z axis. The direction of

increasing ϑ is chosen in such a way that the basis vectors for the cylindrical coordinate system satisfy

(as expected) that ˆ̟ × ϑ̂ = ẑ
′.

The displacement field in this region can be written as

ξ = ̟Ω(z′)ϑ̂. (2.3)

I consider the perturbation in the potential energy of a toroidal field due to this displacement. Since

the height of the cylinder is small relative to the radius of the star, I approximate the field as

B = g(̟,ϑ)ẑ′ (2.4)

where g(̟,ϑ) is a 2π-periodic function that is odd in θ. Using this, the internal energy perturbation

in this region is

δWT = −
1

8π

∫ ǫR

−ǫR

d z′
∫ 2π

0

dϑ

∫ R

0

d̟

[

Ω2

{

(

∂g

∂ϑ

)2

+ g
∂2g

∂ϑ2

}

+̟2g2Ω
d 2Ω

d z′2

]

̟. (2.5)

This expression can be simplified by noting that

(

∂g

∂ϑ

)2

+ g
∂2g

∂ϑ2
=

∂

∂ϑ

(

g
∂g

∂ϑ

)

. Because of this, the

integral over ϑ of this term is be equal to zero, and

δWT = −
1

8π

∫ ǫR

−ǫR

d z′ Ω
d 2Ω

d z′2

∫ 2π

0

dϑ

∫ R

0

d̟ ̟3g2. (2.6)

Furthermore, since I demand that the derivative of Ω vanishes on the boundary, this can be rewritten

as

δWT =
1

8π

∫ ǫR

−ǫR

d z′
(

dΩ

d z′

)2 ∫ 2π

0

dϑ

∫ R

0

d̟̟3g2. (2.7)

From this, it can be seen immediately that δWT > 0, so, as expected, the toroidal field opposes this

displacement. From this point, not too much can be done but to specify a model for both Ω(z′) and

g(̟,ϑ).
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µR

(1− µ)R

ϕ
ρ

Figure 2.1: Model used for the toroidal field. The vertical line is the symmetry axis, and the field is
contained in a circular torus of radius µR that is tangent to the equator of the star, as shown by the
shaded region in the figure. Also depicted in the figure are the coordinates ρ and ϕ used to describe
the magnitude of the field. In the cylinder approximation the torus is treated as two independent
cylindrical regions.

I choose my function Ω(z′) as

Ω(z′) = Ω0 sin

(

z′π

2ǫR

)

⇒ δWT =
πΩ2

0

32ǫR

∫ 2π

0

d θ

∫ R

0

d̟ ̟3g2. (2.8)

This function Ω(z′) is odd and satisfies the required conditions mentioned in equation (2.2). With this

particular displacement field, δWT ∝ ǫ−1. So, as mentioned before, if the region where the displacement

field switches direction is very thin, the magnetic energy will increase significantly, and thus an infinitely

weak toroidal field is enough to stabilize the star against a sharp cut.

Since the toroidal field is confined within the poloidal field lines that are closed inside the star2, I con-

sider the toroidal field to be contained in a torus of internal radius µR. In the cylinder approximation, I

consider this torus as two cylindrical regions of radius µR that are centered at (̟,ϑ) = (R(1−µ),±π/2),

as ilustrated in figure 2.1. In each of these regions, the strength of the field will depend on the distance

2This is required for the star to be in an axisymmetric equilibrium, since if a toroidal field is present outside this
region, the magnetic field produces forces in the azimuthal direction that cannot be countered by any hydrostatic effect.
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Figure 2.2: Plot of the function h(µ) from equation (2.11)

to the center of the cylinder3, so I switch to coordinates (ρ, ϕ) centered on one of these circles in which

I have g = g(ρ) (as is shown in figure 2.1). The corresponding δWT can be solved in these coordinates

as

δWT =
πΩ2

0

32ǫR

∫ 2π

0

dϑ

∫ R

0

d̟ ̟3g(̟,ϑ)2 =
πΩ2

0

16ǫR

∫ 2π

0

dϕ

∫ µR

0

d ρ ρg(ρ)2(d(ρ, ϕ))2, (2.9)

where (d(ρ, ϕ))2 = ρ2 + [R(1 − µ)]2 − 2ρR(1 − µ) cosϕ is the distance to the origin. As a model for

g(ρ), I use

g(ρ) = ηBP cos2
(

ρπ

2µR

)

, (2.10)

where BP is the maximum strength of the poloidal field on the surface, and ηBP is the maximum

strength of the toroidal field. The square on the cosine is necessary for δB to be continuous along the

surface where the toroidal field vanishes. Using this model for the field, δWT results in

δWT =
3Ω2

0η
2E0

64ǫπ2
h(µ), h(µ) = (9π4 − 77π2 + 192)µ4 + µ2π2(6π2 − 32)(1− 2µ) , (2.11)

where E0 is the initial energy of the exterior magnetic field. A plot of the function h(µ) is shown in

3It can be seen from (2.9) that the detailed geometry of the toroidal field is not so relevant, specially if the toroidal
field is contained in a region far away from the center of the star. In the latter case, d(ρ, ϕ) ∼ R(1− µ), and the integral
will involve only the square of the magnitude of the magnetic field times an area element. Because of this, δWT should
be closely related to the energy of the magnetic field, rather than its detailed geometry.



CHAPTER 2. SMOOTH FLOWERS & RUDERMAN’S INSTABILITY 19

figure 2.2, and it can be seen that δWT increases with µ.

2.2 Effect of poloidal fields for the smooth rotation

2.2.1 Cross term in δW

When a poloidal field is added, a cross term appears in δW that involves both the poloidal and

toroidal components of the magnetic field. This term has the form

δWcross = −
1

2

∫

V

dV ξ · [δjT ×BP + jT × δBP + δjP ×BT + jP × δBT ] . (2.12)

where jP and jT are the currents related to the poloidal and toroidal fields respectively4, so

4πjP = ∇×BP , 4πjT = ∇×BT . (2.13)

I consider this term in Cartesian coordinates, requiring only that the magnetic field be axisymmetric,

without specifying the actual configuration of the toroidal and poloidal components of the magnetic

field. The displacement field is as in equation (2.1), with

Ω(x) = sin
(xπ

2ǫ

)

. (2.14)

Considering only the parity of the functions involved, it can be proved that the integrand in δWcross is

an odd function of x, and since the integral is over a sphere, integration over x will immediately give

zero as a final result, so

δWcross = 0 . (2.15)

The detail on how the parity of the integrand is obtained can be found in appendix A.

2.2.2 Purely poloidal contribution to δW

Using the cylinder approximation it is difficult to treat the contribution to δW due only to the

poloidal field. It is also difficult to treat the problem in spherical coordinates, since the regions of

4Because of this, jP is actually a toroidal field and jT is a poloidal field.
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Figure 2.3: Integrand for δWP , −ξ · (δjP ×BP + jP × δBP )/2 , in the plane given by x = ǫ/2 using
ǫ = 1/10, with the line where the integrand is equal to zero plotted on top.

integration involved are non-trivial. However, for certain particular choices of the poloidal field, the

purely poloidal contribution to δW can be solved exactly using Cartesian coordinates. The displacement

field considered here is the same one that was used in §2.2.1. I use a dipole field equivalent to the one

used by Akgün (2009 private communication), but normalized so at the surface the maximum strength

is BP . The function f(r) for this field is5

f(r) =
35Bp

16

[

r2 −
6

5

r4

R2
+

3

7

r6

R4

]

. (2.16)

Solving for the contribution to δW due purely to the poloidal field, one obtains a finite polynomial

in ǫ that to lowest order is

δWP =
(23π2 − 330)

8192
B2

PR
3Ω2

0ǫ =
(69π2 − 990)

2048
E0Ω

2
0ǫ ≃ −0.15ǫE0Ω

2
0. (2.17)

This contribution is negative, but it is not as important as that of δWsc (from equation (1.46) it can be

seen that δWsc ≃ −0.57Ω2E0). Initially we expected the poloidal field to perform a stabilizing effect,

5This field is completely continuous along the surface of the star, so there are no surface currents present in the
equilibrium configuration. Also, it satisfies |j| = 0 at the surface, which is expected from the fact that the matter density
goes to zero there.
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since this displacement would tend to twist field lines that are near to the symmetry axis. However,

the region where the poloidal field lines are closed within the star turns out to be highly unstable to

this displacement, as can be seen in figure 2.3. It can be seen that the contribution to the internal

energy is positive along the axis of symmetry, and the region where it is negative encloses the field lines

that are closed inside the star. We believe the positive contribution to be caused by the twisting of

field lines, and the negative contribution to be due to an effect similar to that described by Markey &

Tayler (1973) and Wright (1973).

2.3 Total internal energy perturbation

To obtain the total energy perturbation, I add all the contributions obtained so far,

δW = δWsc + δWT + δWP (2.18)

= Ω2
0E0

[

3η2

16ǫπ2
h(µ) +

69π2 − 990

2048
ǫ+ (A− 1)

]

. (2.19)

If δWt = 0, then the system is marginally stable, and for that case, solving η2 in terms of µ and ǫ

results in

η2 =
ǫπ2

384h(µ)

[

2048(1−A) + 33(16− 3π2)ǫ
]

. (2.20)

Choosing µ and ǫ, we obtain from this a lower bound on the strength of the toroidal field needed to

stabilize the star against a smooth rotation done on a region of width 2ǫR. However, µ is not completely

arbitrary, since in equilibrium, the toroidal field must be contained by the field lines that are closed

inside the star. A reasonable value for µ (for the poloidal field chosen) is µ = 0.2, which gives me

h(µ) ∼ 6.94. Now, evaluating η in the above expression for ǫ = 1/3 (which should be far above the

region where this approximation is valid, and should serve as a good lower bound on the strength

needed for the toroidal field), one obtains η ∼ 0.95.
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2.4 Comparing the poloidal and toroidal energy of the mag-

netic field

In order to compare this result with that of Braithwaite (2009), we must see what my result means

in terms of the energies of the toroidal and poloidal fields. These energies can be evaluated as (the

energy of the poloidal field includes also the external energy of the magnetic field)

EP =
35

66
B2

PR
3 =

70

11
E0, (2.21)

ET =
B2

pR
3η2

32π

(

3π2 − 16
)

µ2(1− µ) =
3η2

8π

(

3π2 − 16
)

µ2(1− µ)E0, (2.22)

with this, the ratio of poloidal to total energy is

EP

E
=

EP

ET + EP
=

560π

33(3π2 − 16)η2µ2(1− µ) + 560π
. (2.23)

For the values obtained in the previous section, I get a value of this ratio very close to unity, EP /E ∼

0.993. This tells me that a toroidal field with an energy much smaller than the poloidal field is enough

to stabilize the star against this perturbation. This can be compared with the instability that could

be seen in the simulations by Braithwaite & Nordlund (2006) for a ratio of EP /E = 0.8. As this

perturbation happens with a much stronger toroidal field, all seems to indicate that the perturbation

we are studying is not the dominant one, since other instabilities are present for the poloidal field even

when the toroidal field is strong enough to stabilize it against the one we have studied.



Chapter 3

Conclusions and discussion

Flowers & Ruderman (1977) presented an argument that shows how purely poloidal fields in stars

are unstable. If the external field is similar to a dipole, one could cut the star in half and rotate each piece

in opposite directions, leading to a configuration in which the external field resembles a quadropole,

and thus, the energy of the external magnetic field should be significantly reduced. This argument was

given as an analogy to the case of two aligned magnets, in which case the antiparallel configuration

has less energy. Although Flowers & Ruderman’s instability mechanism is widely accepted, no formal

proof had been given that shows both that the external magnetic energy is reduced when the rotation

of each half is completed, and that the energy reduces monotonously along the entire process.

In this report I present a formal proof of this mechanism for the case in which the field outside the

star is that of a point dipole, by solving the energy of the external field along the entire rotation. I

showed that the external magnetic energy decreases monotonously, having a final value of approximately

0.57E0 where E0 is the initial energy. When I proved that the final energy was less than the initial one

I only required a quantity Υ (as defined by equation (1.13)) to be conserved when the perturbation

is done, and Flowers and Ruderman’s instability is just a particular case that satisfies this condition.

Perhaps by studying what other displacements conserve Υ, other interesting instabilities responsible of

reducing the external magnetic energy could be found.

I also studied Flowers and Ruderman’s instability using perturbation theory, in which case I had

to consider the effects of surface currents and perturbed surface currents in order for the instability to

23
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appear. These effects are not unique to Flowers & Ruderman’s instability, and should be considered for

any displacement that modifies the magnetic field on the surface. The result obtained for the internal

energy perturbation of the star was found to be consistent with the exact value of the energy previously

found.

I then studied how a toroidal field could stabilize the star against Flowers & Ruderman’s instability.

Since a sharp cut through the star would split toroidal field lines, the displacement has to be carried out

with a continuous displacement field that switches the orientation of rotation across a thin region. For a

specific model, it was found that the configuration was stable against Flowers & Ruderman’s instability

for a ratio of energies of the poloidal magnetic field to the total magnetic energy of EP /E < 0.993.

Using MHD simulations, Braithwaite (2009) had shown that when the ratio EP /E was below 0.8, the

instabilities driven by the poloidal field were supressed, but if the ratio was just above 0.8, the field was

found to be unstable with an m = 2 mode that does not resemble Flowers & Ruderman’s instability.

Because of this, we conclude that Flowers & Ruderman’s instability mechanism is not the dominant

one.

I am currently constructing a displacement field that allows me to analytically reproduce the results

in Braithwaite (2009), using the configurations for the toroidal and poloidal magnetic fields given in

Chapter 2. The main feature that I expect to reproduce, is that the m = 2 mode becomes unstable for

a ratio EP /E ≃ 0.8 or higher, and from there, study how this critical value depends on the geometry

of the toroidal and poloidal components of the field.



Bibliography

Angel, J.R.P., Carswell, R., Strittmatter, P.A., Beaver, E.A., & Harms, R., 1974, ApJ, 194, L47

Babcock, H.W., 1947, ApJ., 105, 105

Bernstein, I.B., Frieman, E.A., Kruskal, M. D. & Kulsrud, R. M. 1958, Proc. Roy. Soc. A, 244, 17

Braithwaite, J., 2007, A&A, 469, 275

Braithwaite, J., 2009, MNRAS, 397, 763

Braithwaite, J. & Nordlund, A., 2006, A&A, 450, 1077

Braithwaite, J. & Spruit, H.C., 2006, A&A, 450, 1097

Flowers, E. & Ruderman, M.A., 1977, ApJ, 215, 302

Henrichs, H., Neiner, C., Geers, V., & de Jong, J., 2003, in “Magnetism and activity of the Sun and

stars”, J. Arnaud and N. Meunier (eds.), EAS Publ. Series, 9, p.353.

Jordan, S., Werner, K. & O’Toole, S.J., 2005, A&A, 432, 273

Kemp, J.C., Swedlund, J.B., Landstreet, J.D. & Angel, J.R.P., 1970, Apj, 161, L77

Markey, P. & Tayler, R.J., 1973, MNRAS, 163, 77

Markey, P. & Tayler, R.J., 1974, MNRAS, 168, 505

Tayler, R.J., 1973, MNRAS, 161, 365

Reisenegger, A., 2009, A&A, 499, 557

Wright, G.A.E., 1973, MNRAS, 161, 339

25



Appendix A

Parity of the integrand in δWcross

In this appendix, I prove that the integrand of δWcross (that can be seen in (2.12)) is an odd function

of x, and thus, δWcross = 0. In order to do so, I need only to consider the parity of the functions

involved. For simplicity, I now present a notation that allows one to easily solve the symmetries of

complex expressions. The actual proof will be much more simple and evident in this notation. To

begin with, I will use the following symbols to denote a function only by its parity,

ex = Even function of x, ox = Odd function of x, nx = Function with unknown parity in x. (A.1)

From these definitions, the following properties can be obtained direcly

• ex + ex = ex, ox + ox = ox, ex + ox = nx

• ex · ex = ex, ox · ox = ex, ex · ox = ox

• −ex = ex, −ox = ox.

If the functions we are considering are functions of the Cartesian coordinates1 x, y and z, then the

following properties can also be shown to be true

• ∂xex = ox, ∂yex = ∂zex = ex

1Perhaps more general results can be obtained when considering orthogonal coordinate systems, but only the results
in cartesian coordinates are required.
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• ∂xox = ex, ∂yox = ∂zox = ox.

I can also define vector fields considering only the parity in each of their components. For instance

v = exx̂ + exŷ + oxẑ is a vector field whose x and y components are even functions of x, and whose

z component is an odd function of x. A completely arbitrary vector field can be written as nx =

nxx̂+nxŷ+nxẑ. Two vector fields are of special interest, and I will denote them in the following way

ex = exx̂+ oxŷ + oxẑ, ox = oxx̂+ exŷ + exẑ, (A.2)

so, these symbols ex and ox represent vector fields with similar parity in their y and z components, and

opposite parity in its x component. From the properties given for ex and ox, the following properties

can be proved:

• ex × ex = ex, ox × ox = ex, ex × ox = ox

• ex · ex = ex, ox · ox = ex, ex · ox = ox.

Therefore, cross and inner products between these two kinds of vectors behave in a very similar way to

the products of single functions. The last things required to complete the proof, are expressions for the

curl and the gradient of these vectors. The corresponding properties of these differential operators are

• ∇ · ex = ox, ∇ · ox = ex

• ∇× ex = ox, ∇× ox = ex.

Now, using this notation, I can prove that δWcross is an odd function of x. To recall, the integrand is

ε = ξ · [δjT ×BP + jT × δBP + δjP ×BT + jP × δBT ]

where

δBP = ∇× (ξ ×BP ), δBT = ∇× (ξ ×BT ), 4πδjP = ∇× (δBP ), 4πδjT = ∇× (δBT ). (A.3)

And ξ has the form of (2.1). I now proceed to write ξ, BP , and BT as either ex and ox. First, ξ has no

x̂ component, and both its ŷ and ẑ components are odd in x. So, using the notation I just introduced,
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I can write ξ as ξ = oxŷ + oxẑ. Since the x component of ξ is the zero function, I can consider it to

be an even function of x, so

ξ = exx̂+ oxŷ + oxẑ = ex. (A.4)

Now, BT and BP are axisymmetric, with ẑ being the axis of symmetry. BT only has x and y

components, with the x component being an even function of x, and the y component an odd function

of x, so BT can be written as BT = exx̂ + oxŷ. Just as before, since the z component is zero, I can

choose it as ox to get

BT = exx̂+ oxŷ + oxẑ = ex =⇒ jT = ∇× ex = ox. (A.5)

BP has components in x, y, and z, with its x component being an odd function of x, and its y and z

components even functions of x,

BP = oxx̂+ exŷ + exẑ = ox =⇒ jP = ∇× ox = ex. (A.6)

The parity of the perturbed quantities can be solved by using the properties of ex and ox shown above,

δBT = ∇× (ex × ex) = ox, δBP = ∇× (ex × ox) = ex,

δjT = ∇× (ox) = ex, δjP = ∇× (ex) = ox.

(A.7)

The parity of the integrand is then solved to be

ε = ex · [ex × ox + ox × ex + ox × ex + ex × ox] = ox, (A.8)

so, the integrand of δWcross is an odd function of x, and thus, integrates to zero in the case we are

interested in.
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